Skip to main content
Log in

Effect of ultrasonication and grinding on the determination of lipid class content of microalgae harvested on filters

  • Methods
  • Published:
Lipids

Abstract

To ensure complete lipid extraction of algal samples collected on glass fiber filters, one must facilitate the access of extracting solvent to the lipids by using ultrasonication, grinding, or a combination of these two methods. This study examines the effect of these three treatments, in combination with storage time and sampling volumes, on the determination of lipid class composition of the diatom Chaetoceros gracilis. The TAG level was significantly influenced by treatment in relation to either storage time or sampling volume. FFA and other degradation products increased markedly with storage time at the expense of TAG and phospholipids (PL). Finally, sampling volume and storage time interacted in their effects on TAG and PL contents in an inverse manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMPL:

acetone mobile polar lipids

PL:

phospholipids

ST:

cholesterol

TL:

total lipids

References

  1. Volkman, J.K., Jeffrey, S.W., Nichols, P.D., Rogers, G.I., and Garland, C.D. (1989) Fatty Acid and Lipid Composition of 10 Species of Microalgae Used in Mariculture, J. Exp. Mar. Biol. Ecol. 128, 219–240.

    Article  CAS  Google Scholar 

  2. Dunstan, G.A., Volkman, J.K., Jeffrey, S.W., and Barrett, S.M. (1992) Biochemical Composition of Microalgae from the Green Algal Classes Chlorophyceae and Prasinophyceae: 2. Lipid Classes and Fatty Acids, J. Exp. Mar. Biol. Ecol. 161, 115–134.

    Article  CAS  Google Scholar 

  3. Wiltshire, K.H., Boersma, M., Moeller, A., and Buhtz, H. (2000) Extraction of Pigments and Fatty Acids from the Green Alga Scenedesmus obliquus (Chlorophyceae), Aquat. Ecol. 34, 119–126.

    Article  CAS  Google Scholar 

  4. Lewis, T., Nichols, P.D., and McMeekin, T.A. (2000) Evaluation of Extraction Methods for Recovery of Fatty Acids from Lipid-Producing Microheterotrophs, J. Microbiol. Methods 43, 107–116.

    Article  PubMed  CAS  Google Scholar 

  5. Marvin, C.H., Allan, L., McCarry, B.E., and Bryant, D.W. (1992) A Comparison of Ultrasonic Extraction and Soxhlet Extraction of Polycyclic Aromatic Hydrocarbons from Sediments and Particulate Material, Int. J. Environ. Anal. Chem. 49, 221–230.

    CAS  Google Scholar 

  6. Simon, D., and Helliwell, S. (1998) Extraction and Quantification of Chlorophyll a from Freshwater Green Algae, Water Res. 32, 2220–2223.

    Article  CAS  Google Scholar 

  7. Brilis, G.M., and Marsden, P.J. (1990) Comparative Evaluation of Soxhlet and Sonication Extraction in the Determination of Polynuclear Aromatic Hydrocarbons in Soil, Chemosphere 21, 91–98.

    Article  CAS  Google Scholar 

  8. Parrish, C.C. (1999) Determination of Total Lipid, Lipid Classes, and Fatty Acids in Aquatic Samples, in Lipids in Freshwater Ecosystems (Arts, M.T., and Wainman, B.C., eds.), pp. 5–20, Springer-Verlag, New York.

    Google Scholar 

  9. Downes, M.T., Hrstich, L., and Vincent, W. (1993) Extraction of Chlorophyll and Carotenoid Pigments from Antarctic Benthic Mats for Analysis by HPLC, J. Appl. Physiol. 5, 623–628.

    CAS  Google Scholar 

  10. Sasaki, G.C., and Capuzzo, J.M. (1984) Degradation of Artemia Lipids Under Storage, Comp. Biochem. Physiol. 78B, 525–531.

    CAS  Google Scholar 

  11. Ohman, M.D. (1996) Freezing and Storage of Copepod Samples for the Analysis of Lipids, Mar. Ecol. Prog. Ser. 130, 295–298.

    CAS  Google Scholar 

  12. Folch, J., Lees, M., and Sloane Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  13. Bligh, E.G., and Dyer, W.J. (1959) A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  14. Parrish, C.C., and Wangersky, P.J. (1987) Particulate and Dissolved Lipid Classes in Cultures of Phaeodactylum tricornutum Grown in Cage Culture Turbidostats with a Range of Nitorgen Supply Rates, Mar. Ecol. Prog. Ser. 35, 119–128.

    CAS  Google Scholar 

  15. Parrish, C.C. (1987) Separation of Aquatic Lipid Classes by Chromarod Thin-Layer Chromatography with Measurement by latroscan Flame Ionization Detection, Can. J. Fish. Aquat. Sci. 44, 722–731.

    CAS  Google Scholar 

  16. Sherrer, B. (1984) Biostatistique, Gaëtan Morin, Montréal.

    Google Scholar 

  17. Dunstan, G.A., Volkman, J.K., and Barrett, S.M. (1993) The Effect of Lyophilization on the Solvent Extraction of Lipid Classes, Fatty Acids and Sterols from the Oyster Crassostrea gigas Lipids 28, 937–944.

    CAS  Google Scholar 

  18. Berge, J.-P., Gouygou, J.-P., Dubacq, J.-P., and Durand, P. (1995) Reassessment of Lipid Composition of the Diatom, Skeletonema costatum, Phytochemistry, 39, 1017–1021.

    Article  CAS  Google Scholar 

  19. Sand-Jensen, K. (1976) A Comparison of Chlorophyll a Determinations of Unstored and Stored Plankton Filters Extracted by Methanol and Acetone?, Vatten/Water 32, 337–341.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Pernet.

About this article

Cite this article

Pernet, F., Tremblay, R. Effect of ultrasonication and grinding on the determination of lipid class content of microalgae harvested on filters. Lipids 38, 1191–1195 (2003). https://doi.org/10.1007/s11745-003-1178-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-003-1178-6

Keywords

Navigation