Skip to main content
Log in

Ligand-binding domain of farnesoid X receptor (FXR) had the highest sensitivity and activity among FXR variants in a fluorescence-based assay

  • Articles
  • Published:
Lipids

Abstract

The farnesoid X receptor (FXR, NR1H4) has been recognized as an attractive therapeutic target because it is a nuclear hormone receptor that controls the expression level of cholesterol-7α-hydroxylase, which in turn regulates bile acid production and cholesterol excretion. To compare receptor activity between each domain and the full-length protein, human FXR cDNA was cloned from a human liver cDNA library. Three human FXR cDNA, designated FXR20, FXR33, and FXR53 cDNA, were subcloned and ligated into a pET28a expression vector. Each protein was expressed in Escherichia coli (BL21) and purified by nickel-nitrilotriacetic acid column chromatography. Approximately 5 mg of FXR33 (1–182 amino acids deleted from FXR, 37 kDa) and 2 mg of FXR53 (the full-length protein of FXR, 59 kDa) was purified from 1 L of Luria-Bertani culture, achieving at least 90% purity. The coactivator recruitment assay for FXR activation was carried out with the three variants of the FXR protein by using dissociation-enhanced lanthanide fluoroimmunoassay-europium-N1-labeled anti-His antibody. From an optimized assay, a saturated hyperbolic fluorescence signal curve was produced when 250 nM of FXR33 and 100 nM of steroid receptor coactivator-1 peptide, a coactivator of FXR consisting of 26 amino acids, were used with a concentration dependence on chenodeoxycholic acid (from 0 to 200 μM). The ligand-binding domain of FXR (FXR33) was the most suitable protein for studying the activation of FXR with a fluorescence-based assay, because it showed better structural stability than either the full length of FXR (FXR53) or the DNA-binding domain of FXR (FXR20).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

apo:

apolipoprotein

bp(s):

base pair(s)

CDCA:

chenodeoxycholic acid

CYP7A1:

cholesterol-7α-hydroxylase

DELFIA:

dissociation-enhanced lanthanide fluoroimmunoassay

6-ECDCA:

6α-ethyl-chenodeoxycholic acid

FXR:

farnesoid X receptor

1-BABP:

ileal-bile acid-binding protein

Ni-NTA:

nickel-nitrilotriacetic acid

PLTP:

phospholipid transfer protein

SHP:

small heterodimer partner

SRC-1:

steroid receptor coactivator-1

TBST:

Tris-HCL+NaCl+EDTA+Tween

References

  1. Edwards, P.A., Kast, H.R., and Anisfeld, A.M. (2002) BAREing It All: The Adoption of LXR and FXR and Their Roles in Lipid Homeostasis, J. Lipid Res. 43, 2–12.

    PubMed  CAS  Google Scholar 

  2. Fayard, E., Schoonjans, K., and Auwerx, J. (2001) Xol INXS: Role of the Liver X and the Farnesol X Receptors, Curr. Opin. Lipidol. 12, 113–120.

    Article  PubMed  CAS  Google Scholar 

  3. Forman, B.M., Goode, E., Chen, J., Oro, A.E., Bradley, D.J., Perlmann, T., Noonan, D.J., Burka, L.T., McMorris, T., Lamph, W.W., et al. (1995) Identification of a Nuclear Receptor That Is Activated by Farnesol Metabolites, Cell 8, 687–693.

    Article  Google Scholar 

  4. Davis, R.A., Miyake, J.H., Hui, T.Y., and Spann, N.J. (2002) Regulation of Cholesterol-7α-Hydroxylase: Barely Missing a SHP, J. Lipid Res. 43, 533–543.

    PubMed  CAS  Google Scholar 

  5. Chawla, A., Repa, J.J., Evans, R.M., and Mangelsdorf, D.J. (2001) Nuclear Receptors and Lipid Physiology: Opening the X-Files, Science 294, 1866–1870.

    Article  PubMed  CAS  Google Scholar 

  6. Goodwin, B., Jones, S.A., Price, R.R., Watson, M.A., McKee, D.D., Moore, L.B., Galardi, C., Wilson, J.G., Lewis, M.C., Roth, M.E., et al. (2000) A Regulatory Cascade of the Nuclear Receptors FXR, SHP-1, and LRH-1 Represses Bile Acid Biosynthesis, Mol. Cell 6, 517–526.

    Article  PubMed  CAS  Google Scholar 

  7. Laffitte, B.A., Kast, H.R., Nguyen, C.M., Zavacki, A.M., Moore, D.D., and Edwards, P.A. (2000) Identification of the DNA Binding Specificity and Potential Target Genes for the Farnesoid X-Activated Receptor, J. Biol. Chem. 275, 10638–10647.

    Article  PubMed  CAS  Google Scholar 

  8. Mak, P.A., Kast-Woelbern, H.R., Anisfeld, A.M., and Edwards, P.A. (2002) Identification of PLTP as an LXR Target Gene and ApoE as an FXR Target Gene Reveals Overlapping Targets for the Two Nuclear Receptors, J. Lipid Res. 43, 2037–2041.

    Article  PubMed  CAS  Google Scholar 

  9. Parks, D.J., Blanchard, S.G., Bledsoe, R.K., Chandra, G., Consler, T.G., Kliewer, S.A., Stimmel, J.B., Willson, T.M., Zavacki, A.M., Moore, D.D., and Lehmann, J.M. (1999) Bile Acids: Natural Ligands for an Orphan Nuclear Receptor, Science 284, 1365–1368.

    Article  PubMed  CAS  Google Scholar 

  10. Pellicciari, R., Fiorucci, S., Camaioni, E., Clerici, C., Costantino, G., Maloney, P.R., Morelli, A., Parks, D.J., and Willson, T.M. (2002) 6α-Ethyl-chenodeoxycholic acid (6-ECDCA), a Potent and Selective FXR Agonist Endowed with Anticholestatic Activity, J. Med. Chem. 45, 3569–3572.

    Article  PubMed  CAS  Google Scholar 

  11. Maloney, P.R., Parks, D.J., Haffner, C.D., Fivush, A.M., Chandra, G., Plunket, K.D., Creech, K.L., Moore, L.B., Wilson, J.G., Lewis, M.C., et al. (2000) Identification of a Chemical Tool for the Orphan Nuclear Receptor FXR, J. Med. Chem. 43, 2971–2974.

    Article  PubMed  CAS  Google Scholar 

  12. Dussault, I., Beard, R., Lin, M., Hollister, K., Chen, J., Xiao, J., Chandraratna, R., and Forman, B.M. (2003) Identification of Gene-Selective Modulators of the Bile Acid Receptor FXR, J. Biol. Chem. 278, 7027–7033.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang, Y., Kast-Woelbern, H.R., and Edwards, P.A. (2003) Natural Structural Variants of the Nuclear Receptor FarnesoidxReceptor Affect Transcriptional Activation, J. Biol. Chem. 278, 104–110.

    Article  PubMed  CAS  Google Scholar 

  14. Cho, K.H., and Jonas, A. (2000) A Key Point Mutation (V156E) Affects the Structure and Functions of Human Apolipoprotein A-I, J. Biol. Chem. 275, 26821–26827.

    PubMed  CAS  Google Scholar 

  15. Onate, S.A., Tsai, S.Y., Tsai, M., and O'Malley, B.W. (1995) Sequence and Characterization of a Coactivator for the Steroid Hormone Receptor Superfamily, Science 270, 1354–1357.

    Article  PubMed  CAS  Google Scholar 

  16. Makishima, M., Okamoto, A.Y., Repa, J.J., Tu, H., Learned, R.M., Luk, A., Hull, M.V., Lustig, K.D., Mangelsdorf, D.J., and Shan, B. (1999) Identification of a Nuclear Receptor for Bile Acids, Science 284, 1362–1365.

    Article  PubMed  CAS  Google Scholar 

  17. Glickman, J.F., Wu, X., Mercuri, R., Illy, C., Bowen, B.R., He, Y., and Sills, M. (2002) A Comparison of ALPHAScreen, TRFRET, and TRF as Assay Methods for FXR Nuclear Receptors, J. Biomol. Screen. 7, 3–10.

    Article  PubMed  CAS  Google Scholar 

  18. Matsudaira, P. (1987) Sequence from Picomole Quantities of Proteins Electroblotted onto Polyvinylidene Difluoride Membranes, J. Biol. Chem. 262, 10035–10038.

    PubMed  CAS  Google Scholar 

  19. Markwell, M.A.K., Haas, S.M., Bieber, L.L., and Tolbert, N.E. (1978) A Modification of the Lowry Procedure to Simplify Protein Determination in Membrane and Lipoprotein Samples, Anal. Biochem. 87, 206–210.

    Article  PubMed  CAS  Google Scholar 

  20. Chiang, J.Y.L. (1998) Regulation of Bile Acid Synthesis, Front. Biosci. 3, D176-D193.

    PubMed  CAS  Google Scholar 

  21. Kanda, T., Foucand, L., Nakamura, Y., Niot, I., Besnard, P., Fujita, M., Sakai, Y., Hatakeyama, K., Ono, T., and Fujii, H. (1998) Regulation of Expression of Human Intestinal Bile Acid-Binding Protein in Caco-2 Cells, Biochem. J. 330, 261–265.

    PubMed  CAS  Google Scholar 

  22. Ananthanarayanan, M., Balasubramanian, N., Makishima, M., Mangelsdorf, D.J., and Suchy, F.J. (2001) Human Bile Salt Export Pump Promoter Is Transactivated by the Farnesoid X Receptor/Bile Acid Receptor, J. Biol. Chem. 276, 28857–28865.

    Article  PubMed  CAS  Google Scholar 

  23. Urizar, N.L., Dowhan, D.H., and Moore, D.D. (2000) The Farnesoid X-Activated Receptor Mediates Bile Acid Activation of Phospholipid Transfer Protein Gene Expression, J. Biol. Chem. 275, 39313–39317.

    Article  PubMed  CAS  Google Scholar 

  24. Kim, M.S., Shigenaga, J., Moser, A., Feingold, K., and Grunfeld, C. (2003) Repression of Farnesoid X Receptor During the Acute Phase Response, J. Biol. Chem. 278, 8988–8995.

    Article  PubMed  CAS  Google Scholar 

  25. Otte, K., Kranz, H., Kober, I., Thompson, P., Hoefer, M., Haubold, B., Remmel, B., Voss, H., Kaiser, C., Albers, M., et al. (2003) Identification of Farnesoid X Receptor β as a Novel Mammalian Nuclear Receptor Sensing Lanosterol, Mol. Cell. Biol. 23, 864–872.

    Article  PubMed  CAS  Google Scholar 

  26. Seol, W., Choi, H.S., and Moore, D.D. (1995) Isolation of Proteins That Interact Specifically with the Retinoid X Receptor: Two Novel Orphan Receptors, Mol. Endocrinol. 9, 72–85.

    Article  PubMed  CAS  Google Scholar 

  27. Urizar, N.L., Liverman, A.B., Dodds, D.T., Silva, F.V., Ordentlich, P., Yan, Y., Gonzalez, F.J., Heyman, R.A., Mangelsdorf, D.J., and Moore, D.D. (2002) A Natural Product That Lowers Cholesterol as an Antagonist Ligand for FXR, Science 296, 1703–1706.

    Article  PubMed  CAS  Google Scholar 

  28. Wu, J., Xia, C., Meier, J., Li, S., Hu, X., and Lala, D.S. (2002) The Hypolipidemic Natural Product Guggulsterone Acts as an Antagonist of the Bile Acid Receptor, Mol. Endocrinol. 16, 1590–1597.

    Article  PubMed  CAS  Google Scholar 

  29. Cui, J., Huang, L., Zhao, A., Lew, J.L., Yu, J., Sahoo, S., Meinke, P.T., Royo, I., Peleaz, F., and Wright, S.D. (2003) Guggulsterone Is a Farnesoid X Receptor Antagonist in Coactivator Association Assays but Acts to Enhance Transcription of Bile Salt Export Pump, J. Biol. Chem. 278, 10214–10220.

    Article  PubMed  CAS  Google Scholar 

  30. Gopal, K., Saran, N.K., Nityanand, S., Gupta, P.P., Hasan, M., Das, S.K., Sinha, N., and Agarwal, S.S. (1986) Clinical Trial of Ethyl Acetate Extract of Gum Gugulu (Gugulipid) in Primary Hyperlipidemia, J. Assoc. Physicians India 34, 249–251.

    PubMed  CAS  Google Scholar 

  31. Nityanand, S., Srivastava, I.S., and Asthana, O.P. (1989) Clinical Trials with Gugulipid. A New Hypolipidaemic Agent, J. Assoc. Physicians India 37, 323–328.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Sook Jeong.

About this article

Cite this article

Cho, KH., Park, JY., Han, JI. et al. Ligand-binding domain of farnesoid X receptor (FXR) had the highest sensitivity and activity among FXR variants in a fluorescence-based assay. Lipids 38, 1149–1156 (2003). https://doi.org/10.1007/s11745-003-1173-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-003-1173-y

Keywords

Navigation