Skip to main content
Log in

Hyperphagia modifies FA profiles of plasma phospholipids, plasma FFA, and adipose tissue TAG

  • Articles
  • Published:
Lipids

Abstract

Hyperphagia was achieved by continuous intracerebroventricular infusion of a melanocortin receptor antagonist (HS024; Neosystem, Strasbourg, France) in rats. The effects of hyperphagia on FA composition and concentration of plasma phospholipids (PL), plasma FFA, and adipose tissue TAG were studied in rats for 8 d [short-term hyperphagia (STH); n=8], or 28 d [longterm hyperphagia (LTH); n=9]. The control rats were treated with artificial cerebrospinal fluid for 8 d (n=8) or 28 d (n=10). The rats were fed the same regular diet. In STH rats the plasma PL and fasting plasma FFA contained higher concentrations of saturated FA (SFA) and monounsaturated FA (MUFA), and plasma FFA contained lower n−6 PUFA than in the control rats. In LTH rats the plasma PL contained higher concentrations of SFA, MUFA, and n−3 PUFA and higher proportions of 16∶1n−7 and 18∶1n−9 at the expense of 18∶2n−6 than in the control rats. In LTH rats the abundant dietary intake of 18∶2n−6 did not enrich 18∶2n−6 of the plasma PL or adipose tissue TAG. In LTH rats the fasting plasma FFA contained more than twofold higher concentrations of SFA and MUFA, and higher proportions of 16∶1n−7 and 18∶1n−9 at the expense of 18∶2n−6 than in the control rats. This animal obesity model shows that LTH affects the FA composition and concentration of plasma PL, plasma FFA, and adipose tissue TAG, a result consistent with changes associated with increased risk of various diseases in humans. These results also demonstrate that LTH alters the FA composition of plasma PL and adipose tissue TAG in a way that does not reflect the FA composition of dietary fat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACSF:

artificial cerebrosplinal fluid

i.c.v.:

intracerebroventricular

LTH:

long-term hyperphagia

MC:

melanocortin

MUFA:

total monounsaturated FA

PL:

phospholipid

SFA:

total saturated FA

STH:

short-term hyperphagia

References

  1. Lands, W.E. (1995) Long-Term Fat Intake and Biomarkers, Am. J. Clin. Nutr. 61 (Suppl.), 721S-725S.

    PubMed  CAS  Google Scholar 

  2. Skuladottir, G.V., Gudmundsdottir, S., Olafsson, G.B., Sigurdsson, S.B., Sigfüsson, N., and Axelsson, J. (1995) Plasma Fatty Acids and Lipids in Two Separate, but Genetically Comparable, Icelandic Populations, Lipids 30, 649–655.

    PubMed  CAS  Google Scholar 

  3. Lin, D.S., Connor, W.E., and Spenler, C.W. (1993) Are Dietary Saturated, Monounsaturated, and Polyunsaturated Fatty Acids Deposited to the Same Extent in Adipose Tissue of Rabbits?, Am. J. Clin. Nutr. 58, 174–179.

    PubMed  CAS  Google Scholar 

  4. Holman, R.T., Smythe, L., and Johnson, S. (1979) Effect of Sex and Age on Fatty Acid Composition of Human Serum Lipids, Am. J. Clin. Nutr. 32, 2390–2399.

    PubMed  CAS  Google Scholar 

  5. Schwarz, J.-M., Linfoot, P., Dare, D., and Aghajanian, K. (2003) Hepatic de novo Lipogenesis in Normoinsulinemic and Hyperinsulinemic Subjects Consuming High-Fat, Low-Carbohydrate and Low-Fat, High-Carbohydrate Isoenergetic Diets, Am. J. Clin. Nutr. 77, 43–50.

    PubMed  CAS  Google Scholar 

  6. Hudgins, L.C., Hellerstein, M., Seidman, C., Neese, R., Diakun, J., and Hirsch, J. (1996) Human Fatty Acid Synthesis Is Stimulated by a Eucaloric Low Fat, High Carbohydrate Diet, J. Clin. Invest. 97, 2081–2091.

    PubMed  CAS  Google Scholar 

  7. Acheson, K.J., Schutz, Y., Bessard, T., Anantharanan, K., Flatt, J.P., and Jequier, E. (1988) Glycogen Storage Capacity and de novo Lipogenesis During Massive Carbohydrate Overfeeding in Man, Am. J. Clin. Nutr. 48, 240–247.

    PubMed  CAS  Google Scholar 

  8. Mittendorfer, B., and Sidossis, L.S. (2001) Mechanism for the Increase in Plasma Triacylglycerol Concentrations After Consumption of Short-Term, High-Carbohydrate Diets, Am. J. Clin. Nutr. 73, 892–899.

    PubMed  CAS  Google Scholar 

  9. Austin, M.A. (1999) Epidemiology of Hypertriglyceridemia and Cardiovascular Disease, Am. J. Cardiol. 83, 13F-16F.

    Article  PubMed  CAS  Google Scholar 

  10. Kalderon, B., Mayorek, N., Berry, E., Zevit, N., and Bar-Tana, J. (2000) Fatty Acid Cycling in Fasting Rat, Am. J. Physiol. Endocrinol. Metab. 279, E221-E227.

    PubMed  CAS  Google Scholar 

  11. Coppack, S.W., Patel, J.N., and Lawrence, V.J. (2001) Nutritional Regulation of Lipid Metabolism in Human Adipose Tissue, Exp. Clin. Endocrinol. Diabetes (Suppl. 2), S202-S214.

    Article  Google Scholar 

  12. Yli-Jama, P., Meyer, H.E., Ringstad, J., and Pedersen, J.I. (2002) Serum Free Fatty Acid Pattern and Risk of Myocardial Infarction: A Case-Control Study, J. Intern. Med. 251, 19–28.

    Article  PubMed  CAS  Google Scholar 

  13. Yli-Jama, P., Seljeflot, I., Meyer, H.E., Hjerkinn, E.M., Arnesen, H., and Pedersen, J.I. (2002) Serum Non-esterified Very Long-Chain PUFA Are Associated with Markers of Endothelial Dysfunction. Atherosclerosis 164, 275–281.

    Article  PubMed  CAS  Google Scholar 

  14. Carlsson, M., Wessman, Y., Almgren, P., and Groop, L. (2000) High Levels of Nonesterified Fatty Acids Are Associated with Increased Familial Risk of Cardiovascular Disease, Arterioscler. Thromb. Vasc. Biol. 20, 1588–1594.

    PubMed  CAS  Google Scholar 

  15. Frayn, K.N., Williams, C.M., and Arner, P. (1996) Are Increased Plasma Non-esterified Fatty Acid Concentrations a Risk Marker for Coronary Heart Disease and Other Chronic Diseases? Clin. Sci. (London) 90, 243–253.

    CAS  Google Scholar 

  16. Schwartz, M.W., Woods, S.C. Porte, D., Jr., Seeley, R.J., and Baskin, D.G. (2000) Central Nervous System Control of Food Intake, Nature 404, 661–671.

    PubMed  CAS  Google Scholar 

  17. Jonsson, L., Skarphedinsson, J.O., Skuladottir, G.V., Watanobe, H., and Schiöth, H.B. (2002) Food Conversion Is Transiently Affected During 4-Week Chronic Administration of Melanocortin Agonist and Antagonist in Rats, J. Endocrinol. 173, 517–523.

    Article  PubMed  CAS  Google Scholar 

  18. Huszar, D., Lynch, C.A., Fairchild-Huntress, V., Dummore, J.H., Fang, Q., Berkemeier, L.R., Gu, W., Kesterson, R.A., Boston, B.A., Cone, R.D., et al. (1997) Targeted Disruption of the Melanocortin-4 Receptor Results in Obesity in Mice, Cell 88, 131–141.

    Article  PubMed  CAS  Google Scholar 

  19. Jonsson, L., Skarphedinsson, J.O., Skuladottir, G.V., Atlason, P.Th., Eiriksdottir, V.H., Franzson, L., and Schiöth, H.B. (2001) Melanocortin Receptor Agonist Transiently Increases Oxygen Consumption in Rats, NeuroReport 12, 3703–3708.

    Article  PubMed  CAS  Google Scholar 

  20. Skuladottir, G.V., Jonsson, L., Skarphedinsson, J.O., Mutulis, F., Muceniece, R., Raine, A., Mutule, I., Helgason, J., Prusis, P., Wikberg, J.E.S., and Schiöth, H.B. (1999) Long Term Orexigenic Effect of a Novel Melanocortin 4 Receptor Selective Antagonist, Br. J. Pharmacol. 126, 27–34.

    Article  PubMed  CAS  Google Scholar 

  21. Kask, A., Rägo, L., Wikberg, J.E.S., and Schiöth, H.B. (1999) Long-Term Administration of MC4 Receptor Antagonist HS014 Causes Hyperphagia and Obesity in Rats, NeuroReport 10, 707–711.

    PubMed  CAS  Google Scholar 

  22. Sperry, W.M., and Brand, F.C. (1955) The Determination of Total Lipids in Blood Serum, J. Biol. Chem. 213, 69–76.

    PubMed  CAS  Google Scholar 

  23. Nelson, G.J. (1979) Blood Lipids and Lipoproteins: Quantitation, Composition and Metabolism, pp. 10–12, Krieger, Huntington, NY.

    Google Scholar 

  24. Bligh, E.G., and Dyer, W.J. (1959) A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  25. Spayd, R.W., Bruschi, B., Burdick, B.A., Dappen, G.M., Eikenberry, J.N., Esders, T.W., Figueras, J., Goodhue, C.T., LaRossa, D.D., Nelson, R.W., et al. (1978) Multilayer Film Elements for Clinical Analysis: Applications to Representative Chemical Determinations, Clin. Chem. 24, 1343–1350.

    PubMed  CAS  Google Scholar 

  26. Elmquist, J.K. (2001) Hypothalamic Pathways Underlying the Endocrine, Autonomic, and Behavioral Effects of Leptin, Physiol. Behav. 74, 703–708.

    Article  PubMed  CAS  Google Scholar 

  27. van Dijk, G. (2001) The Role of Leptin in the Regulation of Energy Balance and Adiposity, J. Neuroendocrinol. 13, 913–921.

    Article  PubMed  Google Scholar 

  28. Ma, J., Folsom, A.R., Shahar, E., and Eckfeldt, J.H. (1995) Plasma Fatty Acid Composition as an Indicator of Habitual Dietary Fat Intake in Middle-Aged Adults. The Atherosclerosis Risk in Communities (ARIC) Study Investigators, Am. J. Clin. Nutr. 62, 564–571.

    PubMed  CAS  Google Scholar 

  29. Nikkari, T., Luukkainen, P., Pietinen, P., and Puska, P. (1995) Fatty Acid Composition of Serum Lipid Fractions in Relation to Gender and Quality of Dietary Fat, Ann. Med. 27, 491–498.

    PubMed  CAS  Google Scholar 

  30. Cunnane, S.C., and Anderson, M.J. (1997) The Majority of Dietary Linoleate in Growing Rats Is β-Oxidized or Stored in Visceral Fat. J. Nutr. 127, 146–152.

    PubMed  CAS  Google Scholar 

  31. Marques-Lopes, I., Ansorena, D., Astiasaran, I., Forga, L., and Martínez, J.A. (2001) Postprandial de novo Lipogenesis and Metabolic Changes Induced by a High-Carbohydrate. Low-Fat Meal in Lean and Overweight Men, Am. J. Clin. Nutr. 73, 253–261.

    PubMed  CAS  Google Scholar 

  32. McDevitt, R.M., Bott, S.J., Harding, M., Coward, W.A., Bluck, L.J., and Prentice, A.M. (2001) De novo Lipogenesis During Controlled Overfeeding with Sucrose or Glucose in Lean and Obese Women, Am. J. Clin. Nutr. 74, 737–746.

    PubMed  CAS  Google Scholar 

  33. Hudgins, L.C., Siedman, C.E., Diakum, J., and Hirsch, J. (1998) Human Fatty Acid Synthesis Is Reduced Atter the Substitution of Dietary Starch for Sugar, Am. J. Clin. Nutr. 67, 631–639.

    PubMed  CAS  Google Scholar 

  34. Parks, J.E., Krauss, R.M., Christiansen, M.P., Neese, R.A., and Hellerstein, M.K. (1999) Effects of Low-Fat, High-Carbohydrate Diet on VLDL-Triglyceride Assembly, Production, and Clearance, J. Clin. Invest. 104, 1087–1096.

    PubMed  CAS  Google Scholar 

  35. Skuladóttir, G.V., Gudmudsdottir, E., Olafsdottir, E., Gudmundsson, T.V., Hardarson, T., Kristinsson, A., Asvaldsdottir, H., Snorrason, S.P., and Gudbjarnason, S. (1990) Influence of Dietary Cod Liver Oil on Fatty Acid Composition of Plasma Lipids in Human Male Subjects After Myocardial Infarction, J. Intern. Med. 228, 563–568.

    Article  PubMed  Google Scholar 

  36. Crofts, J.W., Ogburn, P.L., Johnson, S.B., and Holman, R.T. (1988) Polyunsaturated Fatty Acids of Serum Lipids in Myocardial Infarction, Lipids 23, 539–545.

    PubMed  CAS  Google Scholar 

  37. Miettinen, T.A., Naukkarinen, V., Huttunen, J.K., Mattila, S., and Kumlin, T. (1982) Fatty-Acid Composition of Serum Lipids Predicts Myocardial Infarction, Br. Med. J. 285, 993–996.

    Article  CAS  Google Scholar 

  38. Kirkeby, K., Ingvaldsen, P., and Bjerkedal, I. (1972) Fatty Acid Composition of Serum Lipids in Men with Myocardial Infarction. Acta Med Scand. 192, 513–519.

    Article  PubMed  CAS  Google Scholar 

  39. Salomaa, V.V., Salminen, I., Rasi, V., Vahtera, E., Aro, A., and Myllyla, G. (1997) Association of the Fatty Acid Composition of Serum Phospholipids with Hemostatic Factors, Arterioscler. Thromb. Vasc. Biol. 17, 809–813.

    PubMed  CAS  Google Scholar 

  40. Grimsgaard, S., Bønaa, K.H., Jacobsen, B.K., and Bjerve, K.S. (1999) Plasma Saturated and Linoleic Fatty Acids Are Independently Associated with Blood Pressure, Hypertension 34, 478–483.

    PubMed  CAS  Google Scholar 

  41. Gaziano, J.M., Hennekens, C.H., O'Donnell, C.J., Breslow, J.L., and Buring, J.E. (1997) Fasting Triglycerides High Density Lipoprotein, and Risk of Myocardial Infarction, Circulation 96, 2520–2525.

    PubMed  CAS  Google Scholar 

  42. Blades, B., and Garg, A. (1995) Mechanisms of Increase in Plasma Triacylglycerol Concentrations as a Result of High Carbohydrate Intakes in Patients with Non-Insulin-Dependent Diabetes Mellitus, Am. J. Clin. Nutr. 62, 996–1002.

    PubMed  CAS  Google Scholar 

  43. Chen, Y.D., Coulston, A.M., Zhou, M.Y., Hollenbeck, C.B., and Reaven, G.M. (1995) Why Do Low-Fat High-Carbohydrate Diets Accentuate Postprandial Lipemia in Patients with NIDDM? Diabetes Care. 18, 10–16.

    PubMed  CAS  Google Scholar 

  44. Reaven, G.M., Chen, Y.D., Jeppesen, J., Maheux, P., and Krauss, R.M. (1993) Insulin Resistance and Hyperinsulinemia in Individuals with Small, Dense, Low Density Lipoprotein Particles, J. Clin. Invest. 92, 141–146.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gudrun V. Skuladottir.

About this article

Cite this article

Skuladottir, G.V., Olason, P.I., Jonsson, L. et al. Hyperphagia modifies FA profiles of plasma phospholipids, plasma FFA, and adipose tissue TAG. Lipids 38, 1127–1132 (2003). https://doi.org/10.1007/s11745-003-1170-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-003-1170-1

Keywords

Navigation