Skip to main content
Log in

Synthesis and characterization of deoxycholyl 2-deoxyglucuronide: A water-soluble affinity labeling reagent

  • Methods
  • Published:
Lipids

Abstract

Acyl glucuronides, which are biosynthesized by the action of glucuronosyltransferases to material for detoxification, are water-soluble and chemically active; they produce irreversible protein adducts via both the transacylation mechanism and the imine mechanism. The acyl group at the C-1 position migrates from the anomeric carbon to the C-2 position of the glucuronic acid moiety, producing the aldehyde group at the C-1 position, where the protein easily condenses through a Schiff's base, in the open-chain aldose form. The elimination of the hydroxyl group at the C-2 position therefore may prevent a protein-bound adduct via the imine mechanism. In this paper, we describe the synthesis and characterization of an acyl 2-deoxyglucuronide of deoxycholic acid as a model compound to investigate its possible utility as a water-soluble affinity labeling reagent for lipophilic carboxylic acids. The solubility of deoxycholyl 2-deoxyglucuronide in an aqueous solution was sufficient under physiological conditions, and the desired material reacted with model peptides to produce covalently bound adducts only via the transacylation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CHCA:

α-cyano-4-hydroxycinnamic acid

DCA:

3α,12α-dihydroxy-5β-cholan-24-oic acid, deoxycholic acid

DCA-24dG:

1-O-(24-deoxycholyl)-2-deoxy-β-d-glucopyranuronic acid, deoxycholyl 2-deoxyglucuronide

HR-MS:

high-resolution MS

MALDI-TOFMS:

matrix-assisted laser desorption ionization time-of-flight MS

TFA:

trifluoroacetic acid

References

  1. Dutton, G.J. (1980) Glucuronidation of Drugs and Other Compounds, CRC Press, Boca Raton.

    Google Scholar 

  2. Magdalou, J., Chajes, V., Lafaurie, C., and Siest, G. (1990) Glucuronidation of 2-Arylpropionic Acids Pirprofen, Flurbiprofen, and Ibuprofen by Liver Microsomes, Drug Metab. Dispos. 18, 692–697.

    PubMed  CAS  Google Scholar 

  3. Ikegawa, S., Murao, N., Oohashi, J., and Goto, J. (1998) Separatory Determination of Diastereomeric Ibuprofen Glucuronides in Human Urine by Liquid Chromatography/Electrospray Ionization-Mass Spectrometry, Biomed. Chromatogr. 12, 317–321.

    Article  PubMed  CAS  Google Scholar 

  4. Ding, A., Ojingwa, J.C., McDonagh, A.F., Burlingame, A.L., and Benet, L.Z. (1993) Evidence for Covalent Binding of Acyl Glucuronides to Serum Albumin via an Imine Mechanism as Revealed by Tandem Mass Spectrometry, Proc. Natl. Acad. Sci. USA 90, 3797–3801.

    Article  PubMed  CAS  Google Scholar 

  5. Smith, P.C., and Liu, J.H. (1993) Covalent Binding of Suprofen Acyl Glucuronide to Albumin in vitro, Xenobiotica 23, 337–348.

    Article  PubMed  CAS  Google Scholar 

  6. Williams, A.M., and Dickinson, R.G. (1994) Studies on the Reactivity of Acyl Glucuronides-VI. Modulation of Reversible and Covalent Interaction of Diflunisal Acyl Glucuronide and Its Isomers with Human Plasma Protein in vitro, Biochem. Pharmacol. 47, 457–467.

    Article  PubMed  CAS  Google Scholar 

  7. Ding, A., Zia-Amirhosseini, P., McDonagh, A.F., Burlingame, A.L., and Benet, L.Z. (1995) Reactivity of Tolmetin Glucuronide with Human Serum Albumin. Identification of Binding Sites and Mechanisms of Reaction by Tandem Mass Spectrometry, Drug Metab. Dispos. 23, 369–376.

    PubMed  CAS  Google Scholar 

  8. Worrall, S., and Dickinson, R.G. (1995) Rat Serum Albumin Modified by Diflumisal Acyl Glucuronide Is Immunogenic in Rats, Life Sci. 56, 1921–1930.

    Article  PubMed  CAS  Google Scholar 

  9. Smith, P.C., and Liu, J.H. (1995) Covalent Binding of Suprofen to Renal Tissue of Rat Correlates with Excretion of Its Acyl Glucuronide, Xenobiotica 25, 531–540.

    Article  PubMed  CAS  Google Scholar 

  10. Akira, K., Taira, T., Hasegawa, H., Sakuma, C., and Yoshihiko, Y. (1998) Studies on the Stereoselective Internal Acyl Migration of Ketoprofen Glucuronides Using 13C Labeling and Nuclear Magnetic Resonance Spectroscopy, Drug Metab. Dispos. 26, 457–464.

    PubMed  CAS  Google Scholar 

  11. Back, P., Spaczinski, K., and Gerok, W. (1974) Bile-Salt Glucuronides in Urine, Hoppe-Seyler's Z. Physiol. Chem. 355, 749–752.

    PubMed  CAS  Google Scholar 

  12. Back, P. (1976) Bile Acid Glucuronides. II. Isolation and Identification of a Chenodeoxycholic Acid Glucuronide from Human Plasma in Intrahepatic Cholestasis, Hoppe-Seyler's Z. Physiol. Chem. 357, 213–217.

    PubMed  CAS  Google Scholar 

  13. Almé, B., and Sjövall, J. (1980) Analysis of Bile Acid Glucuronides in Urine. Identification of 27-Nor-5β-cholestan-3α,7α,12α,24ξ,25ξ-pentol in Man, J. Steroid Biochem. 13, 907–916.

    Article  PubMed  Google Scholar 

  14. Ikegawa, S., Murao, N., Motoyama, T., Yanagihara, T., Niwa, T., and Goto, J. (1996) Separation and Detection of Bile Acid 3-Glucuronides in Human Urine by Liquid Chromatography/Electrospray Ionization-Mass Spectrometry, Biomed. Chromatogr. 10, 313–317.

    Article  PubMed  CAS  Google Scholar 

  15. Goto, J., Murao, N., Nakada, C., Motoyama, T., Oohashi, J., Yanagihara, T., Niwa, T., and Ikegawa, S. (1998) Separation and Characterization of Carboxyl-Linked Glucuronides of Bile Acids in Incubation Mixture of Rat Liver Microsomes, Steroids 63, 186–192.

    Article  PubMed  CAS  Google Scholar 

  16. Ikegawa, S., Okuyama, H., Oohashi, J., Murao, N., and Goto, J. (1999) Separation and Detection of Bile Acid 24-Glucuronides in Human Urine by Liquid Chromatography Combined Electrospray Ionization Mass Spectrometry, Anal. Sci. 15, 625–631.

    Article  CAS  Google Scholar 

  17. Ikegawa, S., Murao, N., Nagata, M., Ohba, S., and Goto, J. (1999) Covalent Binding of Bile Acid Acyl Glucuronide with Protein, Anal. Sci. 15, 213–215.

    Article  CAS  Google Scholar 

  18. Hoj, P.B., Condron, R., Traeger, J.C., McAuliffe, J.C., and Stone, B.A. (1996) Identification of Glutamic Acid 105 at the Active Site of Bacillus amyloliquefaciens 1,3–1,4-β-d-Glucanohydrolase Using Epoxide-Based Inhibitors, J. Biol. Chem. 267, 25059–25066.

    Google Scholar 

  19. Tull, D., Burgoyne, D.L., Chow, D.T., Withers, S.G., and Aebersold, R. (1996) A Mass Spectrometry-Based Approach for Probing Enzyme Active Sites: Identification of Glu 127 in Cellulomonas fimi Exoglycanase as the Residue Modified by N-Bromoacetyl Cellobiosylamine, Anal. Biochem. 234, 119–125.

    Article  PubMed  CAS  Google Scholar 

  20. Mills, J.S., Miettinen, H.M., Barnidge, D., Vlases, M.J., Wimer-Mackin, S., Dratz, E.A., Sunner, J., and Jesaitis, A.J. (1998) Identification of a Ligand Binding Site in the Human Neutrophil Formyl Peptide Receptor Using a Site-Specific Fluorescent Photoaffinity Label and Mass Spectrometry, J. Biol. Chem. 273, 10428–10435.

    Article  PubMed  CAS  Google Scholar 

  21. Swamy, N., Dutta, A., and Ray, R. (1997) Roles of the Structure and Orientation of Ligands and Mimics Inside the Ligand-Binding Pocket of the Vitamin D-Binding Protein, Biochemistry 36, 7432–7436.

    Article  PubMed  CAS  Google Scholar 

  22. Antolovic, R., Linder, D., Hahnen, J., and Schoner, W. (1995) Affinity Labeling of a Sulfhydryl Group in the Cardiacglycoside Receptor Site of Na+/K+-ATPase by N-Hydroxysuccinimidyl Derivatives of Digoxigenin, Eur. J. Biochem. 227, 61–67.

    Article  PubMed  CAS  Google Scholar 

  23. Ullman, E.F., Milburn, G., Jelesoko, J., Radika, K., Pirio, M., Kempe, T., and Skold, C. (1993) Anti-Immune Complex Antibodies Enhance Affinity and Specificity of Primary Antibodies, Proc. Natl. Acad. Sci. USA 90, 1184–1189.

    Article  PubMed  CAS  Google Scholar 

  24. Panfil, I., Lehman, P.A., Zimniak, M., Ernest, B., Franz, T., Lester, R., and Radominska, A. (1992) Biosynthesis and Chemical Synthesis of Carboxyl-Linked Glucuronides of Lithocholic Acid, Biochim. Biophys. Acta 1126, 221–228.

    PubMed  CAS  Google Scholar 

  25. Mitsunobu, O. (1981) The Use of Diethylazodicarboxylate and Triphenylphosphine in Synthesis and Transformation of Natural Products, Synthesis 7, 1–28.

    Article  Google Scholar 

  26. Goto, J., Murao, N., Oohashi, J., and Ikegawa, S. (1998) Synthesis of Bile Acid 24-Acyl Glucuronides, Steroids 63, 180–185.

    Article  PubMed  CAS  Google Scholar 

  27. Roepstorff, P., and Fohlman, J. (1984) Proposal for a Common Nomenclature for Sequence Ions in Mass Spectra of Peptides, Biomed. Mass Spectrom. 11, 601.

    Article  PubMed  CAS  Google Scholar 

  28. Bieman, K. (1989) Tandem Mass Spectrometry Applied to Protein Structure Problems, Biochem. Soc. Trans. 17, 237–243.

    Google Scholar 

  29. Makishima, M., Okamoto, Y., Repa, J.J., Tu, H., Learned, R.M., Luk, A., Hull, M.V., Lustig, K.D., Mangelsdorf, D.J., and Shan, B. (1999) Identification of a Nuclear Receptor for Bile Acids, Science 284, 1362–1365.

    Article  PubMed  CAS  Google Scholar 

  30. Parks, D.J., Blanchard, S.G., Bledsoe, R.K., Chandra, G., Consler, T.G., Kliewer, S.A., Stimmel, J.B., Willson, T.M., Zavacki, A.M., Moore, D.D., and Lehmann, J.M. (1999) Bile Acids: Natural Ligands for an Orphan Nuclear Receptor, Science 284, 1365–1368.

    Article  PubMed  CAS  Google Scholar 

  31. Mano, N., Nishimura, K., Narui, T., Ikegawa, s., and Goto, J. (2002) Characterization of Rat Liver Bile Acid Acyl Glucuronosyltransferase, Steroids 67, 257–262.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Goto.

About this article

Cite this article

Mano, N., Nishijima, A., Saito, S. et al. Synthesis and characterization of deoxycholyl 2-deoxyglucuronide: A water-soluble affinity labeling reagent. Lipids 38, 873–879 (2003). https://doi.org/10.1007/s11745-003-1138-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-003-1138-1

Keywords

Navigation