Skip to main content
Log in

Liver desaturase activities and FA composition in monkeys. Effect of a low-protein diet

  • Articles
  • Published:
Lipids

Abstract

The aim of the present study was to measure Δ9-, Δ6-, and Δ5-desaturase activities in liver microsomes, as well as phospholipid FA composition of liver and erythrocytes in monkeys fed a control or low-protein diet during the postweaning period. Ten Saimiri sciureus boliviensis (Cebidae) of both sexes were employed; at 12 mon of age they were separated into two groups fed ad libitum on a control or a low-protein diet for 24 mon. Saimiri sciureus had active Δ9, Δ6, and Δ5 liver desaturase enzymes, and these activities were influenced by the diet. A low-protein diet produced a significant reduction in Δ5-desaturation capacity, an increase in Δ9-desaturase activity, and no change in Δ6-desaturase activity (P<0.05). These changes, evoked by protein deprivation, were reflected in the liver phospholipid FA composition. Increases in the proportion of saturated FA and in monounsaturated oleic acid (18∶1n−9) and a decrease in the proportion of PUFA of the n−6 and n−3 series were produced in the animals fed a low-protein diet (P<0.0001). Differences between the two dietary groups were less pronounced in the FA composition of erythrocyte phospholipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brenner, R.R. (1989) Factors Influencing Fatty Acid Chain Elongation and Desaturation, in The Role of Fats in Human Nutrition, (Vergrosen, A.J., and Crawford, M., eds.), pp. 45–79, Academic Press, London, England.

    Google Scholar 

  2. Sardesai, V.M. (1992) Biochemical and Nutritional Aspects of Eicosanoids, J. Nutr. Biochem. 3, 562–579.

    Article  CAS  Google Scholar 

  3. Ayala, S., Gaspar, G., Brenner, R.R., Peluffo, R.O., and Kunau, W. (1973) Fate of Linoleic, Arachidonic and Docosa-7,10,13,16-tetraenoic Acids in Rat Testicles, J. Lipid Res. 14, 296–305.

    PubMed  CAS  Google Scholar 

  4. Sprecher, H. (1977) Biosynthetic Pathways of Polyunsaturated Fatty Acids, Adv. Exp. Med. Biol. 83, 35–50.

    PubMed  CAS  Google Scholar 

  5. Sprecher, H. (1981) Biochemistry of Essential Fatty Acids, Prog. Lipid Res. 20, 13–22.

    Article  PubMed  CAS  Google Scholar 

  6. Brenner, R.R. (1981) Nutritional and Hormonal Factors Influencing Desaturation of Essential Fatty Acids, Prog. Lipid Res. 20, 41–47.

    Article  PubMed  CAS  Google Scholar 

  7. Mercuri, O., De Tomás, M.E., and Itarte, H. (1979) Prenatal Protein Depletion and Δ9, Δ6, and Δ5 Desaturases in the Rat, Lipids 14, 822–825.

    PubMed  CAS  Google Scholar 

  8. De Tomás, M.E., Mercuri, O., and Serres, C. (1983) Effect of Cross-Fostering Rats at Birth on the Normal Supply of Essential Fatty Acids During Protein Deficiency, J. Nutr. 113, 314–319.

    PubMed  Google Scholar 

  9. Marín, M.C., De Tomás, M.E., Serres, C., and Mercuri, O. (1995) Protein-Energy Malnutrition During Gestation and Lactation in Rats Affects Growth Rate, Brain Development and Essential Fatty Acid Metabolism, J. Nutr. 125, 1017–1024.

    PubMed  Google Scholar 

  10. Marín, M.C., De Tomás, M.E., Mercuri, O., Fernández, A., and Serres, C. (1991) Interrelationship Between Protein-Energy Malnutrition and Essential Fatty Acid Deficiency in Nursing Infants, Am. J. Clin. Nutr. 53, 466–468.

    PubMed  Google Scholar 

  11. Marín, M.C., Rey, G.E., Pedersoli, L.C., Rodrigo, M.A., and Alaniz, M.J.T. de (2000) Dietary Long-Chain Fatty Acids and Visual Response in Malnourished Nursing Infants, Prostaglandins Leukot, Essent. Fatty Acids 63, 385–390.

    Article  Google Scholar 

  12. Tinoco, J. (1982) Dietary Requirements and Functions of α-Linolenic Acid in Animals, Prog. Lipid Res. 21, 1–45.

    Article  PubMed  CAS  Google Scholar 

  13. National Research Council (1985) Guide for the Care and Use of Laboratory Animals, Publication no. 85-23 (rev.), National Institutes of Health, Bethesda, MD.

    Google Scholar 

  14. Brenner, R.R., and Peluffo, R.O. (1966) Effect of Saturated Fatty Acids on the Desaturation in vitro of Palmitic, Stearic, Oleic, Linoleic and Linolenic Acids, J. Biol. Chem. 241, 5213–5219.

    PubMed  CAS  Google Scholar 

  15. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  16. Garda, H.A., Leikin, A.I., and Brenner, R.R. (1992) Determination of Fatty Acid Desaturase Activities by RP-HPLC, An. Asoc. Quim. Arg. 80, 365–371.

    CAS  Google Scholar 

  17. Folch, J., Lees, M., and Sloane Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  18. Hanahan, D.J., Dittmer, J.C., and Warashina, E. (1957) A Column Chromatographic Separation of Classes of Phospholipids, J. Biol. Chem. 228, 685–690.

    PubMed  CAS  Google Scholar 

  19. Morrison, W.R., and Smith, L.M. (1964) Preparation of Fatty Acid Methyl Esters and Dimethylacetals from Lipids with Boron Fluoride-Methanol, J. Lipid Res. 5, 600–608.

    PubMed  CAS  Google Scholar 

  20. Brenner, R.R. (1971) The Desaturation Step in the Animal Biosynthesis of Polyunsaturated Fatty Acids, Lipids 6, 567–575.

    PubMed  CAS  Google Scholar 

  21. Crawford, M.A. (1987) The Requirements of Long Chain n−6 and n−3 Fatty Acids for the Brain, in Polyunsaturated Fatty Acids and Eicosanoids (Land, W.E.M., ed.), pp. 270–295, American Oil Chemists Society, Champaign.

    Google Scholar 

  22. Rivers, J.P.W., Sinclair, A.J., and Crawford, M.A. (1975) Inability of the Cat to Desaturate Essential Fatty Acids, Nature 258, 171–173.

    Article  PubMed  CAS  Google Scholar 

  23. Rivers, J.P.W., Hassam, A.G., Crawford, M.A., and Brambell, M.R. (1976) The Inability of the Lion, Panthera leo L., to Desaturate Linoleic Acid, FEBS Lett. 67, 269–270.

    Article  PubMed  CAS  Google Scholar 

  24. Hassam, A.G., Rivers, J.P.W., and Crawford, M.A. (1977) The Failure of the Cat to Desaturate Linoleic Acid: Its Nutritional Implications, Nutr. Metab. 21, 321–328.

    Article  PubMed  CAS  Google Scholar 

  25. Sinclair, A.J., McLean, J.G., and Monger, E.A. (1979) Metabolism of Linoleic Acid in the Cat, Lipids 14, 932–936.

    PubMed  CAS  Google Scholar 

  26. Pawlosky, R., Barnes, A., Salem, N., Jr. (1994) Essential Fatty Acid Metabolism in the Feline: Relationship Between Liver and Brain Production of Long-Chain Polyunsaturated Fatty Acids, J. Lipid Res. 35, 2032–2040.

    PubMed  CAS  Google Scholar 

  27. Su, H.M., Corso, T.N., Nathanielsz, P.W., and Brenna, J.T. (1999) Linoleic Acid Kinetics and Conversion to Arachidonic Acid in the Pregnant and Fetal Baboon, J. Lipid Res. 40, 1304–1311.

    PubMed  CAS  Google Scholar 

  28. Kanazawa, A., Hayashi, M., and Fujimoto, K. (1993) Evidence of Docosahexaenoic Acid Synthesis and Predominant Existence of Arachidonic Acid in Livers of Fetal and Neonatal Crab-Eating Monkeys: Comparisons with Adults, J. Nutr. Sci. Vitaminol. (Tokyo) 39, 521–525.

    CAS  Google Scholar 

  29. De Tomás, M.E., Mercuri, O., de Serres, C.T., Marín, M.C., and Rodrigo, A. (1994) Efecto de la Administración de Aceite de Maíz Sobre la Composición en Ácidos Grasos de los Fosfolípidos del Plasma de Lactantes Normales y Desnutridos Alimentados con Leche de Vaca, Medicina (Buenos Aires) 54, 385–391.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María C. Marín.

Additional information

The authors are members of the Carrera del Investigador del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.

About this article

Cite this article

Marín, M.C., Pucciarelli, H.M. & de Alaniz, M.J.T. Liver desaturase activities and FA composition in monkeys. Effect of a low-protein diet. Lipids 38, 525–529 (2003). https://doi.org/10.1007/s11745-003-1094-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-003-1094-9

Keywords

Navigation