Skip to main content
Log in

Effect of temperature and addition of α-tocopherol on the oxidation of trilinolein model systems

  • Articles
  • Published:
Lipids

Abstract

The effects of temperature and addition of α-tocopherol were evaluated in trilinolein model systems through quantification of oxidized TAG monomers, dimers, and polymers following oxidation at different temperatures. Samples of trilinolein without and with 250 and 500 mg/kg α-tocopherol added were stored at 25, 60, and 100°C. Quantification of oxidized monomers, dimers, and polymers by a combination of adsorption and exclusion chromatography provided a useful measurement for studying the evolution of oxidation. Results showed that the amounts of primary oxidation compounds (trilinolein oxidized monomers) that accumulated during the induction period decreased as the temperature increased, indicating that the slope of the initial linear stage of oxidation depended on temperature. The end of the induction period was marked by a sharp increase in the levels of total oxidation compounds, the initiation of polymerization, and the loss of α-tocopherol. Addition of α-tocopherol did not prevent, but rather delayed, formation of trilinolein oxidized monomers and the initiation of polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DIM:

trilinolein dimers

HPSEC:

high-performance sizeexclusion chromatography

IP:

induction period

LLL:

trilinolein

LLL-250:

trilinolein with 250 mg/kg α-tocopherol added

LLL-500:

trilinolein with 500 mg/kg α-tocopherol added

oxMON:

oxidized monomers

POL:

trilinolein polymers

References

  1. Gray, J.L. (1978) Measurements of Lipid Oxidation: A Review, J. Am. Oil Chem. Soc. 55, 539–546.

    CAS  Google Scholar 

  2. Löliger, J. (1989) Méthodes Instrumentales pour l'Analyse de l'Etat d'Oxydation de Produits Alimentaires, Rev. Fr. Corps Gras 36, 301–308.

    Google Scholar 

  3. Holmer, G. (1991) Methods for Detection of Oxidative Changes in Lipids, in Proceedings of the 16th Scandinavian Symposium on Lipids (Holmer, G., ed.), pp. 114–137. Lipidforum, Hardanger, Norway.

    Google Scholar 

  4. Kanner, J., and Rosenthal, I. (1992) An Assessment of Lipid Oxidation in Foods, Pure Appl. Chem. 64, 1959–1964.

    CAS  Google Scholar 

  5. Halliwell, B., and Chirico, S. (1993) Lipid Peroxidation: Its Mechanism, Measurement and Significance, Am. J. Clin. Nutr. 57 (Suppl.), 715S-725S.

    PubMed  CAS  Google Scholar 

  6. Frankel, E.N. (1993) In Search of Better Methods to Evaluate Natural Antioxidants and Oxidative Stability in Food Lipids, Trends Food Sci. Technol. 4, 220–225.

    Article  CAS  Google Scholar 

  7. Frankel, E.N. (1998) Methods to Determine Extent of Oxidation, in Lipid Oxidation (Frankel, E.N., ed.), pp. 79–98, The Oily Press, Dundee, Scotland.

    Google Scholar 

  8. Dobarganes, M.C., Pérez-Camino, M.C., and Márquez-Ruiz, G. (1988) High-Performance Size-Exclusion Chromatography of Polar Compounds in Heated and Non-heated Fats, Fat Sci. Technol. 90, 308–311.

    CAS  Google Scholar 

  9. Dobarganes, M.C., Velasco, J., and Dieffenbacher, A. (2000) The Determination of Polar Compounds, Polymerized Triacylglycerols, Oxidized Triacylglycerols and Diacylglycerols in Fats and Oils, Pure Appl. Chem. 72, 1563–1575.

    CAS  Google Scholar 

  10. Pérez-Camino, M.C., Márquez-Ruiz, G., Ruiz-Méndez, M.V., and Dobarganes, M.C. (1990) Determinación Cuantitativa de Triglicéridos Oxidados para la Evaluación Global del Grado de Oxidación en Aceites y Grasas Comestibles, Grasas Aceites 41, 366–370.

    Google Scholar 

  11. Pérez-Camino, M.C., Márquez-Ruíz, G., Ruiz-Méndez, M.V., and Dobarganes, M.C. (1991) Lipid Oxidation in Fats and Fatty Foods. Quantitative Determination of Oxidized Triglycerides, in Proceedings of Euro Food Chem VI (Baltes, W., Eklund, T., Fenwick, R., Pfannhauser, W., Ruiter, A., and Thier, H.P., eds.), Vol. 2, pp. 569–574, Lebensmittelchemische Gesellschaft, Frankfurt.

    Google Scholar 

  12. Hopia, A. (1993) Analysis of High Molecular Weight Autoxidation Products Using High-Performance Size-Exclusion Chromatography: I. Changes During Autoxidation, Food Sci. Technol. 26, 563–567.

    CAS  Google Scholar 

  13. Hopia, A., Lampi, A.-M., Piirönen, V.I., Hyvönen, L.E.T., and Koivistoinen, P.E. (1993) Application of High-Performance Size-Exclusion Chromatography to Study the Autoxidation of Unsaturated Triacylglycerols, J. Am. Oil Chem. Soc. 70, 779–784.

    CAS  Google Scholar 

  14. Martín-Polvillo, M., Márquez-Ruiz, G., Jorge, N., Ruiz-Méndez, M.V., and Dobarganes, M.C. (1996) Evolution of Oxidation During Storage of Crisps and French Fries Prepared with Sunflower Oil and High Oleic Sunflower Oil, Grasas Aceites 47, 54–58.

    Google Scholar 

  15. Márquez-Ruiz, G., Martín-Polvillo, M., Jorge, N., Ruiz-Méndez, M.V., and Dobarganes, M.C. (1999) Influence of Used Frying Oil Quality and Natural Tocopherol Content on Oxidative Stability of Fried Potatoes, J. Am. Oil Chem. Soc. 76, 421–425.

    Google Scholar 

  16. Márquez-Ruiz, G., Jorge, N., Martín-Polvillo, M., and Dobarganes, M.C. (1996) Rapid, Quantitative Determination of Polar Compounds in Fats and Oils by Solid-Phase Extraction and Exclusion Chromatography Using Monostearin as Internal Standard, J. Chromatogr. 749, 55–60.

    Article  Google Scholar 

  17. Márquez-Ruiz, G., Martín-Polvillo, M., and Dobarganes, M.C. (1996) Quantitation of Oxidized Monomers and Dimers as a Useful Measurement for Early and Advanced Stages of Oxidation, Grasas Aceites 47, 48–53.

    Google Scholar 

  18. Warner, K. (1997) Measuring Tocopherol Efficacy in Fats and Oils, in Antioxidant Methodology: In vivo and in vitro Concepts (Aruoma, O.I., and Cuppett, S.L., eds.), pp. 223–233, AOCS Press, Champaign.

    Google Scholar 

  19. Madhavi, D.L., Singhai, R.S., and Kulkarni, P.R. (1996) Technological Aspects of Food Antioxidants, in Food Antioxidants: Technological. Toxicological and Health Perspectives (Madhavi, D.L., Deshpande, S.S., and Salunkhe, D.K., eds.), pp. 159–265, Marcel Dekker, New York.

    Google Scholar 

  20. Ragnarsson, J.O., and Labuza, T.P. (1977) Accelerated Shelf Life Testing for Oxidative Rancidity in Foods, Food Chem. 2, 291–308.

    Article  CAS  Google Scholar 

  21. Rossell, J.B. (1989) Measurement of Rancidity, in Rancidity in Foods (Allen, J.C., and Hamilton, R.J., eds.), pp. 21–45, Elsevier, New York.

    Google Scholar 

  22. Method 2.432. IUPAC (1992) in Standard Methods for the Analysis of Oils, Fats and Derivatives, 1st suppl. to 7th edn. (International Union of Pure and Applied Chemistry, ed.), Pergamon Press, Oxford.

    Google Scholar 

  23. Dobarganes, M.C., and Márquez-Ruiz, G. (1996) Dimeric and Higher Oligomeric Triglycerides, in Deep Frying: Chemistry, Nutrition, and Practical Applications (Perkins, E.G., and Erickson, M.D., eds.), pp. 89–111, AOCS Press, Champaign.

    Google Scholar 

  24. American Oil Chemists' Society (1994) Official Methods and Recommended Practices of the American Oil Chemists' Society, 4th edn., AOCS, Champaign, Method Cd 12b-92.

    Google Scholar 

  25. Mukai, K., and Okauchi, Y. (1989) Kinetic Study of the Reaction Between Tocopheroxyl Radical and Unsaturated Fatty Acid Esters in Benzene, Lipids 24, 936–939.

    CAS  Google Scholar 

  26. Huang, S.-W., Frankel, E.N., and German, J.B. (1994) Antioxidant Activity of α- and γ-Tocopherols in Bulk Oils and in Oil-in-Water Emulsions, J. Agric. Food Chem. 42, 2108–2114.

    Article  CAS  Google Scholar 

  27. Huang, S.-W., Frankel, E.N., and German, J.B. (1994) Effects of Individual Tocopherols and Tocopherol Mixtures on the Oxidative Stability of Corn Oil Triglycerides, J. Agric. Food Chem. 43, 2345–2350.

    Article  Google Scholar 

  28. Martín-Polvillo, M. (2000) Evolución de la Alteración Oxidativa y Formación de Nuevos Compuestos en Sistemas Modelo, Aceites y Alimentos Grasos, Ph.D. Thesis, Universidad de Sevilla, Sevilla, Spain.

    Google Scholar 

  29. Duffey, G.H. (2000) Modern Physical Chemistry: A Molecular Approach, pp. 405–420, Kluwer Academic, New York.

    Google Scholar 

  30. Labuza, T.P., Tsuyuki, H., and Kerel, M. (1969) Kinetics of Linoleate Oxidation in Model Systems, J. Am. Oil Chem. Soc. 46, 409–416.

    PubMed  CAS  Google Scholar 

  31. Kaya, A., Tekin, A.R., and Öner, M.D. (1993) Oxidative Stability of Sunflower and Olive Oils: Comparison Between a Modified Active Oxygen Method and Long Term Storage, Lebensm. Wiss. Technol. 26, 464–468.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Dobarganes.

About this article

Cite this article

Márquez-Ruiz, G., Martín-Polvillo, M. & Dobarganes, C. Effect of temperature and addition of α-tocopherol on the oxidation of trilinolein model systems. Lipids 38, 233–240 (2003). https://doi.org/10.1007/s11745-003-1056-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-003-1056-2

Keywords

Navigation