Skip to main content
Log in

Distributions of hydroperoxide positional isomers generated by oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine in liposomes and in methanol solution

  • Articles
  • Published:
Lipids

Abstract

The differences in distribution of geometric isomers of unsaturated PC hydroperoxides generated by free radical oxidation were compared, as corresponding hydroxy analogs, in heterogeneous liposomes and in a homogeneous methanol solution by using HPLC with UV detection due to the presence of conjugated dienes. Identification of fractionated peak components was carried out by GC-MS. When the oxidation of 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine, PC(16∶0/18∶2), was initiated in liposomes by a hydrophilic azo radical initiator, and in a methanol solution by a hydrophobic azo radical initiator, there was no significant difference in the relative percentages of 1-palmitoyl-2-(9-hydroxy-trans-10,trans-12-octadecadienoyl)-sn-glycero-3-phosphocholine (9-t,t-OH PC) and 1-palmitoyl-2-(13-hydroxy-trans-9,trans-11-octadecadienoyl)-sn-glycero-3-phosphocholine (13-t,t-OH PC) between the PC oxidized in liposomes and in the methanol solution. For the oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine, PC(16∶0/20∶4), the relative percentage of 1-palmitoyl-2-(5-hydroxy-trans-6,cis-8,11,14-eicosatetraenoyl)-sn-glycero-3-phosphocholine (5-OH PC) was significantly higher (P<0.01) than that of 1-palmitoyl-2-(15-hydroxy-cis-5,8,11,trans-13-eicosatetraenoyl)-sn-glycero-3-phosphocholine (15-OH PC) in liposomes. For the homogeneous methanol solution of PC(16∶0/20∶4), the relative percentage of 5-OH PC was close to that of 15-OH PC. For the PC(16∶0/20∶4) oxidized in bulk with added pentamethylchromanol, the individual amount of 15-OH PC, 1-palmitoyl-2-(11-hydroxy-cis-5,8trans-12,cis-14-eicosatetraenoyl)-sn-glycero-3-phosphocholine (11-OH PC), 1-palmitoyl-2-(12-hydroxy-cis-5,8,trans-10,cis-14-eicosatetraenoyl)-sn-glycero-3-phosphocholine (12-OH PC), 1-palmitoyl-2-(8-hydroxy-cis-5,trans-9,cis-11,14-eicosatetraenoyl)-sn-glycero-3-phosphocholine (8-OH PC), 1-palmitoyl-2-(9-hydroxy-cis-5,trans-7,cis-11,14-eicosatetraenoyl)-sn-glycero-3-phosphocholine (9-OH PC), and 5-OH PC were close to each other compared to the corresponding values in liposomes and in methanol solution. The results obtained by gel permeation chromatography of the PC liposomes containing hydrophilic 2,2′-azobis-2-amidinopropane) dihydrochloride (AAPH) suggest that the AAPH added to the liposomes of PC(16∶0/20∶4) was partitioned into the water phase and out of the hydrophobic region of the fatty acyl moieties of the PC. These results confirm that the distance that exists in the bis-allylic carbons of the unsaturated fatty acyl moieties of PC from the interface between the hydrophilic region of PC and the water phases played an important role in influencing hydrogen abstraction to form a symmetrical distribution of hydroperoxide isomers in both the heterogeneous liposomes and the homogeneous methanol solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAPH:

2,2′-azobis-(2-amidinopropane) dihydrochloride

AMVN:

2,2′-azobis-(2,4-dimethylvaleronitrile)

9-OOH PC:

1,2-di(9-hydroperoxy-octadecadienoyl)-sn-glycero-3-phosphocholine

13-OOH PC:

1,2-di(13-hydroperoxy-octadecadienoyl)-sn-glycero-3-phosphocholine

PC(16∶0/18∶2):

1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine

PC(16∶0/20∶4):

1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine

PC-OH:

hydroxy PC

PC-OOH:

PC hydroperoxides

PMC:

pentamethylchromanol

TMS:

trimethylsilyl

Trolox® :

6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid

References

  1. Yamamoto, Y., Niki, E., Kamiya, Y., and Shimasaki, H. (1984) Oxidation of Phosphatidylcholines in Homogeneous Solution and in Water Dispersion, Biochim. Biophys. Acta 795, 332–340.

    PubMed  CAS  Google Scholar 

  2. Cosgrove, J.P., Church, D.F., and Pryor, W.A. (1987) The Kinetics of the Autoxidation of Polyunsaturated Fatty Acids, Lipids 22, 299–304.

    PubMed  CAS  Google Scholar 

  3. Yamamoto, Y., Niki, E., and Kamiya, Y. (1982) Quantitative Determination of the Oxidation of Methyl Linoleate and Methyl Linolenate, Bull. Chem. Soc. Jpn. 55, 1548–1550.

    Article  CAS  Google Scholar 

  4. Bruna, E., Petei, E., Beijean-Leymarie, M., Huynh, S., and Nouvelot, A. (1989) Specific Susceptibility of Docosahexaenoic Acid and Eicosapentaenoic Acid to Peroxidation in Aqueous Solution, Lipids 24, 970–975.

    CAS  Google Scholar 

  5. Miyashita, K., Nara, E., and Ota, T. (1993) Oxidative Stability of Polyunsaturated Fatty Acids in an Aqueous Solution, Biosci. Biotechnol. Biochem. 57, 1638–1640.

    CAS  Google Scholar 

  6. Yazu, K., Yamamoto, Y., Ukegawa, K., and Niki, E. (1996) Mechanism of Lower Oxidizability of Eicosapentaenoate than Linolenate in Aqueous Micelles, Lipids 31, 337–340.

    PubMed  CAS  Google Scholar 

  7. Yazu, K., Yamamoto, Y., Niki, E., Miki, K., and Ukegawa, K. (1998) Mechanism of Lower Oxidizability of Eicosapentaenoate than Linoleate in Aqueous Micelles. II. Effect of Antioxidants, Lipids 33, 597–600.

    Article  PubMed  CAS  Google Scholar 

  8. Coxon, D.T., Price, K.R., and Chan, H.W.-S. (1981) Formation, Isolation and Structure Determination of Methyl Linolenate Diperoxides, Chem. Phys. Lipids 28, 365–378.

    Article  CAS  Google Scholar 

  9. Neff, W.E., Frankel, E.N., and Weisleder, D. (1981) High-Pressure Liquid Chromatography of Autoxidized Lipids: II. Hydroperoxy-Cyclic Peroxides and Other Secondary Products from Methyl Linolenate, Lipids 16, 439–448.

    CAS  Google Scholar 

  10. O’Connor, D.E., Michelich, E.D., and Coleman, M.C. (1984) Stereochemical Course of the Autoxidative Cyclization of Lipid Hydroperoxides to Prostaglandin-Like Bicyclo-endoperoxides, J. Am. Chem. Soc. 106, 3577–3584.

    Article  CAS  Google Scholar 

  11. Frankel, E.N., Neff, W.E., Rohwedder, W.K., Khambay, B.P.S., Garwood, R.F., and Weedon, B.C.L. (1977) Analysis of Autoxidized Fats by Gas Chromatography-Mass Spectrometry: I. Methyl Oleate, Lipids 12, 901–907.

    PubMed  CAS  Google Scholar 

  12. Frankel, E.N., Garwood, R.F., Khambay, B.P.S., Moss, G., and Weedon, B.C.L. (1984) Stereochemistry of Olefins and Fatty Acid Oxidation. III. The Allylic Hydroperoxides from the Autoxidation of Methyl Oleate, J. Chem. Soc. Perkin Trans. 1, 2233–2240.

    Article  Google Scholar 

  13. Frankel, E.N., Neff, W.E., and Weisleder, D. (1990) Determination of Lipid Hydroperoxides by 13C NMR Spectrometry, Methods Enzymol. 186, 380–387.

    Article  PubMed  CAS  Google Scholar 

  14. Porter, N.A., Mills, K.A., and Carter, R.A. (1994) A Mechanistic Study of Oleate Autoxidation: Competing Peroxy H-Atom Abstraction and Rearrangement, J. Am. Chem. Soc. 116, 6690–6696.

    Article  CAS  Google Scholar 

  15. Wang, X.-H., Oshima, T., Ushio, T., and Koizumi, C. (1999) Proportion of Geometrical Hydroperoxide Isomers Generated by Radical Oxidation of Methyl Linoleate in Homogeneous Solution and in Aqueous Emulsion, Lipids 34, 675–679.

    Article  PubMed  CAS  Google Scholar 

  16. Selke, E., Frankel, E.N., and Neff, W.E. (1978) Thermal Decomposition of Methyl Oleate Hydroperoxides and Identification of Volatile Components by Gas Chromatography-Mass Spectrometry, Lipids 13, 511–513.

    CAS  Google Scholar 

  17. Frankel, E.N., Neff, W.E., Selke, E., and Weisleder, D. (1982) Photosensitized Oxidation of Methyl Linoleate. Secondary and Volatile Thermal Decomposition Products, Lipids 17, 11–18.

    CAS  Google Scholar 

  18. Frankel, E.N., Neff, W.E., Selke, E., and Brooks, D.D. (1987) Thermal and Metal Catalyzed Decomposition of Methyl Linolenates, Lipids 22, 322–327.

    CAS  Google Scholar 

  19. Milne, G.L., and Porter, N.A. (2001) Separation and Identification of Phospholipid Peroxidation Products, Lipids 36, 1265–1275.

    Article  PubMed  CAS  Google Scholar 

  20. Chapman, R.A., and Mackay, K. (1949) The Estimation of Peroxides in Fats and Oils by the Ferric Thiocyanate Method, J. Am. Oil Chem. Soc. 26, 360–363.

    CAS  Google Scholar 

  21. Box, G.E.P., Hunter, W.G., and Hunter, J.S. (1978) Statistics for Experimenters, pp. 21–56, John Wiley & Sons, New York.

    Google Scholar 

  22. Barclay, L.R.C., Artz, J.D., and Mowat, J.J. (1995) Partitioning and Antioxidant Action of the Water-Soluble Antioxidant, Trolox, Between the Aqueous and Lipid Phases of Phosphatidylcholine Membranes: 14C Tracer and Product Studies, Biochim. Biophys. Acta 1237, 77–85.

    Article  PubMed  Google Scholar 

  23. Fukuzawa, K., Ikebata, W., Shibata, A., and Kumadaki, I. (1992) Location of Dynamics of α-Tocopherol in Model Phospholipid Membranes with Different Charges, Chem. Phys. Lipids 63, 69–75.

    Article  PubMed  CAS  Google Scholar 

  24. Kelley, E.E., Buettner, G.R., and Burns, C.P. (1995) Relative α-Tocopherol Deficiency in Cultured Cells: Free Radical-Mediated Lipid Peroxidation, Lipid Oxidizability, and Cellular Polyunsaturated Fatty Acid Content, Arch. Biochem. Biophys. 319, 102–109.

    Article  PubMed  CAS  Google Scholar 

  25. Hopia, A., Huang, S.-W., and Frankel, E.N. (1996) Effect of α-Tocopherol and Trolox on the Decomposition of Methyl Linoleate Hydroperoxides, Lipids 31, 357–365.

    Article  PubMed  CAS  Google Scholar 

  26. Yamauchi, R., Yagi, Y., and Kato, K. (1996) Oxidation of α-Tocopherol During the Peroxidation of Dilinoleylphosphatidylcholine in Liposomes, Biosci. Biotech. Biochem. 60, 616–620.

    Article  CAS  Google Scholar 

  27. Yamauchi, R., Hara, Y., Murase, H., and Kato, K. (2000) Analysis of the Addition Products of α-Tocopherol with Phosphatidylcholine-Proxy Radicals by High-Performance Liquid Chromatography with Chemiluminescenct Detection, Lipids 35, 1405–1410.

    Article  PubMed  CAS  Google Scholar 

  28. Litman, B.J., Lewis, E.N., and Levin, I.W. (1991) Packing Characteristics of Highly Unsaturated Bilayer Lipids: Raman Spectroscopic Studies of Multilamellar Phosphatidylcholine Dispersion, Biochemistry 30, 313–319.

    Article  PubMed  CAS  Google Scholar 

  29. Rich, M.R. (1993) Conformational Analysis of Arachidonic and Related Fatty Acids Using Molecular Dynamics Simulations, Biochim. Biophys. Acta 1178, 87–96.

    Article  PubMed  CAS  Google Scholar 

  30. Khaselev, N., and Murphy, R.C. (2000) Peroxidation of Arachidonate Containing Plasmenyl Glycerophosphocholine: Facile Oxidation of Esterified Arachidonate at Carbon-5, Free Radic. Biol. Med. 29, 620–632.

    Article  PubMed  CAS  Google Scholar 

  31. Murphy, R.C. (2001) Free-Radical-Induced Oxidation of Arachidonoyl Plasmalogen Phospholipids: Antioxidant Mechanism and Precursor Pathway for Bioactive Eicosanoids, Chem. Res. Toxicol. 14, 463–472.

    Article  PubMed  CAS  Google Scholar 

  32. Peers, K.E., and Coxon, D.T. (1983) Controlled Synthesis of Monohydroperoxides by α-Tocopherol Inhibited Autoxidation of Polyunsaturated Lipids, Chem. Phys. Lipids 32, 49–56.

    Article  CAS  Google Scholar 

  33. Yamagata, S., Murakami, H., Terao, J., and Matsushita, S. (1983) Nonenzymatic Oxidation Products of Methyl Arachidonate, Agric. Biol. Chem. 47, 2791–2799.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Ohshima.

About this article

Cite this article

Wang, XH., Ushio, H. & Ohshima, T. Distributions of hydroperoxide positional isomers generated by oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine in liposomes and in methanol solution. Lipids 38, 65–72 (2003). https://doi.org/10.1007/s11745-003-1032-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-003-1032-x

Keywords

Navigation