Skip to main content
Log in

Digestion and assimilation features of dietary DAG in the rat small intestine

  • Articles
  • Published:
Lipids

Abstract

Several recent studies have demonstrated that dietary DAG oil rich in 1,3-species suppresses the postprandial increase of serum TAG level and decreases body fat accumulation, compared with TAG oil. To clarify the mechanisms underlying the beneficial effects of DAG, we investigated the metabolic features of DAG in the small intestine with regard to the digestion pathway in the lumen and the TAG-synthesis pathway in the mucosa. When intraduodenally infused as an emulsion, TAG was digested to 1,2-DAG, 2-MAG, and FFA, whereas 1,3-DAG was digested to 1(3)-MAG and FFA. When assessed by the incorporation of [1-14C]linoleic acid in lipids, the mucosal TAG-synthesis was significantly reduced by DAG infusion compared with TAG infusion. However, the mucosal 1,3-DAG synthesis was remarkably increased in the DAG-infused rats. The total amount of mucosal 1,3-DAG was also increased (4.5-fold) after DAG infusion compared with that after TAG infusion. Next, we examined the synthesis pathway of 1,3-DAG. In cultures of the everted intestinal sacs, 1,3-DAG production required the presence of 1-MAG, suggesting that the 1,3-DAG synthesis was due to acylation of 1(3)-MAG in the DAG-infused rats. Furthermore, measurements of DAG acyltransferase activity indicated that 1,3-DAG was little utilized in TAG synthesis. These findings suggest that features of 1,3-DAG digestion and assimilation in the intestine may be responsible for the reduction of the postprandial serum TAG level by dietary DAG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DGAT:

diacylglycerol acyltransferase

DO:

dioleoylglycerol

IOD:

integrated optical density

MO:

monooleoylglycerol

TO:

trioleoylglycerol

References

  1. D’Alonzo, R.P., Kozarek, W.J., and Wade, R.L. (1982) Glyceride Composition of Processed Fats and Oils as Determined by Glass Capillary Gas Chromatography, J. Am. Oil Chem. Soc. 59, 292–295.

    CAS  Google Scholar 

  2. Abdel-Nabey, A.A., Shehata, A.A.Y., Ragab, M.H., and Rossell, J.B. (1992) Glycerides of Cottonseed Oils from Egyptian and Other Varieties, Riv. Ital. Sostanze Grasse 69, 443–447.

    CAS  Google Scholar 

  3. Nagao, T., Watanabe, H., Goto, N., Onizawa, K., Taguchi, H., Matsuo, N., Yasukawa, T., Tsushima, R., Shimasaki, H., and Itakura, H. (2000) Dietary Diacylglycerol Suppresses Accumulation of Body Fat Compared to Triacylglycerol in Men in a Double-Blind Controlled Trial, J. Nutr. 130, 792–797

    PubMed  CAS  Google Scholar 

  4. Taguchi, H., Watanabe, H., Onizawa, K., Nagao, T., Gotoh, N., Yasukawa, T., Tsushima, R., Shimasaki, H., and Itakura, H. (2000) Double-Blind Controlled Study on the Effects of Dietary Diacylglycerol on Postprandial Serum and Chylomicron Triacylglycerol Responses in Healthy Humans, J. Am. Coll. Nutr. 19, 789–796.

    PubMed  CAS  Google Scholar 

  5. Tada, N., Watanabe, H., Matsuo, N., Tokimitsu, I., and Okazaki, M. (2001) Dynamics of Postprandial Remnant-like Lipoprotein Particles in Serum After Loading of Diacylglycerols, Clin. Chim. Acta 311, 109–117.

    Article  PubMed  CAS  Google Scholar 

  6. Yamamoto, K., Asakawa, H., Tokunaga, K., Watanabe, H., Matsuo, N., Tokimitsu, I., and Yagi, N. (2001) Long-Term Ingestion of Dietary Diacylglycerol Lowers Serum Triacylglycerol in Type II Diabetic Patients with Hypertriglyceridemia, J. Nutr. 131, 3204–3207.

    PubMed  CAS  Google Scholar 

  7. Couillard, C., Bergeron, N., Prud’homme, D., Bergeron, J., Tremblay, A., Bouchard, C., Mauriège, P., Després, J.P. (1998) Postprandial Triglyceride Response in Visceral Obesity in Men, Diabetes 47, 953–960.

    PubMed  CAS  Google Scholar 

  8. Mekki, N., Christofilis, M.A., Charabonnier, M., Atlan-Gepner, C., Juhel, C., Borel, P., Portugal, H., Pauli, A.M., Vialettes, B., and Lairon, D. (1999) Influence of Obesity and Body Fat Distribution on Postprandial Lipemia and Triglyceride-Rich Lipoproteins in Adult Women, J. Clin. Endocrinol. Metab. 84, 184–191.

    Article  PubMed  CAS  Google Scholar 

  9. Murase, T., Mizuno, T., Omachi, T., Onizawa, K., Komine, Y., Kondo, H., Hase, T., and Tokimitsu, I. (2001) Dietary Diacylglycerol Suppresses High Fat and High Sucrose Diet-Induced Body Fat Accumulation in C57BL/6J Mice, J. Lipid Res. 42, 372–378.

    PubMed  CAS  Google Scholar 

  10. Murata, M., Hara, K., and Ide, T. (1994) Alteration by Diacylglycerols of the Transport and Fatty Acid Composition of Lymph Chylomicrons in Rats, Biosci. Biotech. Biochem. 58, 1416–1419.

    Article  Google Scholar 

  11. Taguchi, H., Nagao, T., Watanabe, H., Onizawa, K., Matsuo, N., Tokimitsu, I., and Itakura, H. (2001) Energy Value and Digestibility of Dietary Oil Containing Mainly 1,3-Diacylglycerol Are Similar to Those of Triacylglycerol, Lipids 36, 379–382.

    PubMed  CAS  Google Scholar 

  12. Clark, B., and Hubscher, G. (1960) Biosynthesis of Glycerols in the Mucosa of the Small Intestine, Nature 185, 35–37.

    Article  PubMed  CAS  Google Scholar 

  13. Clark, B., and Hubscher, G., (1961) Biosynthesis of Glycerides in Subcellular Fractions of Intestinal Mucosa, Biochim. Biophys. Acta 46, 479–494.

    Article  PubMed  CAS  Google Scholar 

  14. Hara, K., Onizawa, K., Honda, H., Otsuji, K., Ide, T., and Murata, M. (1993) Dietary Diacylglycerol-Dependent Reduction in Serum Triacylglycerol Concentration in Rats, Ann. Nutr. Metab. 37, 185–191.

    Article  PubMed  CAS  Google Scholar 

  15. Barron, E.J., and Hanahan, D.J. (1958) Observation on the Silicic Acid Chromatography of the Neutral Lipids of Rat Liver, Beef Liver and Yeast, J. Biol. Chem. 231, 493–503.

    PubMed  CAS  Google Scholar 

  16. Mansbach, C.M., 2nd, and Nevin, P. (1998) Intracellular Movement of Triacylglycerols in the Intestine, J. Lipid Res. 39, 963–968.

    PubMed  CAS  Google Scholar 

  17. Breckenridge, W.C., and Kuksis, A. (1975) Diacylglycerol Biosynthesis in Everted Sacs of Rat Intestinal Mucosa, Can. J. Biochem. 53, 1170–1183.

    PubMed  CAS  Google Scholar 

  18. Grigor, M.R., and Bell, R.M. (1982) Separate Monoacylglycerol and Diacylglycerol Acyltransferases Function in Intestinal Triacylglycerol Synthesis, Biochim. Biophys. Acta. 712, 464–472.

    PubMed  CAS  Google Scholar 

  19. Rustan, A.C., Nossen, J.Ø., Christiansen, E.N., and Drevon, C.A. (1988) Eicosapentaenoic Acid Reduces Hepatic Synthesis and Secretion of Triacylglycerol by Decreasing the Activity of Acyl Coenzyme A:1,2-Diacylglycerol Acyltransferase, J. Lipid Res. 29, 1417–1426.

    PubMed  CAS  Google Scholar 

  20. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  21. Fredrikson, G., and Belfrage, P. (1983) Positional Specificity of Hormone-Sensitive Lipase from Rat Adipose Tissue, J. Biol. Chem. 258, 14253–14256.

    PubMed  CAS  Google Scholar 

  22. Macala, L.J., Yu, R.K., and Ando, S. (1983) Analysis of Brain Lipids by High Performance Thin-Layer Chromatography and Densitometry, J. Lipid Res. 24, 1243–1250.

    PubMed  CAS  Google Scholar 

  23. Morgan, R.G.H., and Borgström, B. (1969) The Mechanism of Fat Absorption in the Bile Fistula Rat, Q. J. Exp. Physiol. Cogn. Med. Sci. 54, 228–243.

    PubMed  CAS  Google Scholar 

  24. Mattson, F.H., Bendict, J.H., Martin, J.B., and Beck, L.W. (1952) Intermediates Formed During the Digestion of Triglycerides, J. Nutr. 48, 335–344.

    PubMed  CAS  Google Scholar 

  25. Mattson, F.H., and Beck, L.W. (1955) The Digestion in vitro of Triglycerides by Pancreatic Lipase, J. Biol. Chem. 214, 115–125.

    PubMed  CAS  Google Scholar 

  26. Jensen, R.G., de Jong, F.A., and Clark, R.M. (1983) Determination of Lipase Specificity, Lipids 18, 239–252.

    PubMed  CAS  Google Scholar 

  27. Szafran, Z., Kubala, T., Szafran, H., and Popiela, T. (1983) Sequential Hydrolysis of Three Acyl Ester Bonds in Triolein Molecule by Human Gastric Juice Lipase, Enzyme 30, 115–121.

    PubMed  CAS  Google Scholar 

  28. Bell, R.M., and Coleman, R.A. (1980) Enzymes of Glycerolipid Synthesis in Eukaryotes, Annu. Rev. Biochem. 49, 459–487.

    Article  PubMed  CAS  Google Scholar 

  29. Lehner, R., and Kuksis, A. (1996) Biosynthesis of Triacylglycerols, Prog. Lipid Res. 35, 169–201.

    Article  PubMed  CAS  Google Scholar 

  30. Cases, S., Smith, S.J., Zheng, Y.W., Myers, H.M., Lear, S.R., Sande, E., Novak, S., Collins, C., Welch, C.B., Lusis, A.J. et al. (1998) Identification of a Gene Encoding an Acyl CoA:Diacylglycerol Acyltransferase, a Key Enzyme in Triacylglycerol Synthesis, Proc. Natl. Acad. Sci. U.S.A. 95, 13018–13023.

    Article  PubMed  CAS  Google Scholar 

  31. Cases, S., Stone, S.J., Zhou, P., Yen, E., Tow, B., Lardizabal, K.D., Voelker, T., and Farese, R.V., Jr. (2001) Cloning of DGAT2, a Second Mammalian Diacylglycerol Acyltransferase, and Related Family Members, J. Biol. Chem. 276, 38870–38876.

    Article  PubMed  CAS  Google Scholar 

  32. Paris, R., and Clement, G. (1968) Biosynthesis of Triglycerides from Doubly-Labeled 2-Monopalmitin in the Intestinal Mucosa of the Rat, Biochim. Biophys. Acta 152, 63–74.

    PubMed  CAS  Google Scholar 

  33. Breckenridge, W.C., and Kuksis, A. (1975) Triacylglycerol Biosynthesis in Everted Sacs of Rat Intestinal Mucosa, Can. J. Biochem. 53, 1184–1195.

    Article  PubMed  CAS  Google Scholar 

  34. Higgins, J.A., and Barrnett, R.J. (1971) Fine Structural Localization of Acyltransferases. The Monoglyceride and α-Glycerophosphate Pathways in Intestinal Absorptive Cells, J. Cell Biol. 50, 102–120.

    Article  PubMed  CAS  Google Scholar 

  35. Brindley, D.N., and Hubscher, G. (1965) The Intracellular Distribution of the Enzymes Catalyzing the Biosynthesis of Glycerides in the Intestinal Mucosa, Biochim. Biophys. Acta 106, 495–509.

    PubMed  CAS  Google Scholar 

  36. Mansbach, C.M., 2nd, Arnold, A., and Garrett, M. (1987) Effect of Chloroquine on Intestinal Lipid Metabolism, Am. J. Physiol. 253, G673-G678.

    PubMed  CAS  Google Scholar 

  37. Yang, L.-Y., and Kuksis, A. (1991) Apparent Convergence (at 2-monoacylglycerol level) of Phosphatidic Acid and 2-Monoacylglycerol Pathways of Synthesis of Chylomicron Triacylglycerols, J. Lipid Res. 32, 1173–1186.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Tokimitsu.

About this article

Cite this article

Kondo, H., Hase, T., Murase, T. et al. Digestion and assimilation features of dietary DAG in the rat small intestine. Lipids 38, 25–30 (2003). https://doi.org/10.1007/s11745-003-1027-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-003-1027-7

Keywords

Navigation