Skip to main content
Log in

Fatty acid mobilized by the vascular endothelial growth factor in human endothelial cells

  • Articles
  • Published:
Lipids

Abstract

Release of FFA from membrane phospholipids was observed after incubation of umbilical cord vein-derived endothelial cells (HUVEC) with vascular endothelial growth factor (VEGF). In particular, we found an increase of arachidonate, stearate, and palmitate in a time-dependent manner with a peak at 30 min. The maximum increase was reached by arachidonate (4.4-fold), followed by stearate (2.2-fold) and palmitate (1.3-fold). The arachidonate increase can be ascribed to the activation of phospholipase A2 (PLA2). In fact, cells preincubated with arachidonyl trifluoromethyl ketone, a PLA2 inhibitor, showed a marked reduction in arachidonate mobilization. The role of Ca2+ in PLA2 activation was also investigated. Cells incubated with VEGF in the presence of EGTA showed a marked decrease in arachidonate mobilization, whereas incubation with the calcium ionophore A23187 alone produced an increase in arachidonate, although to a lesser extent compared with the VEGF stimulation. Incubation with A23187 in association with PMA produced the same increase in arachidonate as the VEGF treatment. Mitogen-activated protein kinase (MAPK) activity was also found to increase as a consequence of VEGF stimulation. Taken together, these results suggest that the VEGF-mediated activation of PLA2 in HUVEC is dependent on both MAPK-mediated phosphorylation and Ca2+ increase. Furthermore, the increase in stearate and palmitate likely is brought about by the activation of a pathway involving phospholipase D, phosphatidate phosphohydrolase (PAP), and DAG lipase. In fact, the increase in those FFA was prevented when HUVEC were stimulated with VEGF in the presence of ethanol (which inhibits the formation of phosphatidate), propranolol (a specific inhibitor of PAP), or RHC-80267 (a specific inhibitor of DAG lipase).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AACOCF3 :

arachidonyl trifluoromethyl ketone

ADAM:

9-anthryldiazomethane

HUVEC:

human umbilical cord vein-derived endothelial cells

KDR:

kinase insert domain receptor

MAPK:

mitogen-activated protein kinase

PAP:

phosphatidate phosphohydrolase

PKC:

protein kinase C

PLA2 :

phospholipase A2

PLD:

phospholipase D

RHC-80267:

a DAG lipase inhibitor

VEGF:

vascular endothelial growth factor

References

  1. Ferrara, N. (1996) Vascular Endothelial Growth Factor, Eur. J. Cancer 32A, 2413–2422.

    Article  PubMed  CAS  Google Scholar 

  2. Plate, K.H., Breier, G., Weich, H.A., and Risau, W. (1992) Vascular Endothelial Growth Factor Is a Potential Tumour Angiogenesis Factor in Human Gliomas in vivo, Nature 359, 845–848.

    Article  PubMed  CAS  Google Scholar 

  3. Hashimoto, M., Ohsawa, M., Ohnishi, A., Naka, N., Hirota, S., Kitamura, Y., and Aozasa, K. (1995) Expression of Vascular Endothelial Growth Factor and Its Receptor mRNA in Angiosarcoma, Lab. Invest. 73, 859–863.

    PubMed  CAS  Google Scholar 

  4. Benjamin, L.E., and Keshet, E. (1997) Conditional Switching of Vascular Endothelial Growth Factor (VEGF) Expression in Tumors: Induction of Endothelial Cell Shedding and Regression of Hemangioblastoma-like Vessels by VEGF Withdrawal, Proc. Natl. Acad. Sci. USA 94, 8761–8766.

    Article  PubMed  CAS  Google Scholar 

  5. Folkman, J. (1991) Biologic Therapy of Cancer (De Vita, V., Hellman, S., and Rosenberg, S.A., eds.), pp. 743–753, Lippincott, Philadelphia.

    Google Scholar 

  6. Folkman, J. (1995) Angiogenesis in Cancer, Vascular, Rheumatoid and Other Disease, Nat. Med. 1, 27–31.

    Article  PubMed  CAS  Google Scholar 

  7. Ferrara, N. (2001) Role of Vascular Endothelial Growth Factor in Regulation of Physiological Angiogenesis, Am. J. Physiol. Cell Physiol. 280, C1358-C1366.

    PubMed  CAS  Google Scholar 

  8. Ravindranath, N., Little-Ihrig, L., Phillips, H.S., Ferrara, N., and Zeleznik, A.J. (1992) Vascular Endothelial Growth Factor Messenger Ribonucleic Acid Expression in the Primate Ovary, Endocrinology 131, 254–260.

    Article  PubMed  CAS  Google Scholar 

  9. Shweiki, D., Itin, A., Neufeld, G., Gitay-Goren, H., and Keshet, E. (1993) Patterns of Expression of Vascular Endothelial Growth Factor (VEGF) and VEGF Receptors in Mice Suggest a Role in Hormonally Regulated Angiogenesis, J. Clin. Invest. 91, 2235–2243.

    PubMed  CAS  Google Scholar 

  10. Cullinan-Bove, K., and Koos, R.D. (1993) Vascular Endothelial Growth Factor/Vascular Permeability Factor Expression in the Rat Uterus: Rapid Stimulation by Estrogen Correlates with Estrogen-Induced Increases in Uterine Capillary Permeability and Growth, Endocrinology 133, 829–837.

    Article  PubMed  CAS  Google Scholar 

  11. Gerber, H.P., Vu, T.H., Ryan, A.M., Kowalski, J., Werb, Z., and Ferrara, N. (1999) VEGF Couples Hypertrophic Cartilage Remodeling, Ossification and Angiogenesis During Endochondral Bone Formation, Nat. Med. 5, 623–628.

    Article  PubMed  CAS  Google Scholar 

  12. Kim, K.J., Li, B., Winer, J., Armanini, M., Gillett, N., Phillips, H.S., and Ferrara, N. (1993) Inhibition of Vascular Endothelial Growth Factor-Induced Angiogenesis Suppresses Tumour Growth in vivo, Nature 362, 841–844.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang, H.T., Craft, P., Scott, P.A., Ziche, M., Weich, H.A., Harris, A.L., and Bicknell, R. (1995) Enhancement of Tumor Growth and Vascular Density by Transfection of Vascular Endothelial Cell Growth Factor into MCF-7 Human Breast Carcinoma Cells, J. Natl. Cancer Inst. 87, 213–219.

    PubMed  CAS  Google Scholar 

  14. Takahashi, Y., Kitadai, Y., Bucana, C.D., Cleary, K.R., and Ellis, L.M. (1995) Expression of Vascular Endothelial Growth Factor and Its Receptor, KDR, Correlates with Vascularity, Metastasis, and Proliferation of Human Colon Cancer, Cancer Res. 55, 3964–3968.

    PubMed  CAS  Google Scholar 

  15. de Vries, C., Escobedo, J.A., Ueno, H., Houck, K., Ferrara, N., and Williams, L.T. (1992) The fms-like Tyrosine Kinase, A Receptor for Vascular Endothelial Growth Factor, Science 255, 989–991.

    Article  PubMed  Google Scholar 

  16. Millauer, B., Wizigmann-Voos, S., Schnurch, H., Martinez, R., Moller, N.P., Risau, W., and Ullrich, A. (1993) High Affinity VEGF Binding and Developmental Expression Suggest flk-1 as a Major Regulator of Vasculogenesis and Angiogenesis, Cell 72, 835–846.

    Article  PubMed  CAS  Google Scholar 

  17. Quinn, T.P., Peters, K.G., de Vries, C., Ferrara, N., and Williams, L.T. (1993) Fetal Liver Kinase 1 Is a Receptor for Vascular Endothelial Growth Factor and Is Selectively Expressed in Vascular Endothelium, Proc. Natl. Acad. Sci. USA 90, 7533–7537.

    Article  PubMed  CAS  Google Scholar 

  18. Terman, B.I., Dougher-Vermazen, M., Carrion, M.E., Dimitrov, D., Armellino, D.C., Gospodarowicz, D., and Bohlen, P. (1992) Identification of the KDR Tyrosine Kinase as a Receptor for Vascular Endothelial Cell Growth Factor, Biochem. Biophys. Res. Commun. 187, 1579–1586.

    Article  PubMed  CAS  Google Scholar 

  19. Brock, T.A., Dvorak, H.F., and Senger, D.R. (1991) Tumor-Secreted Vascular Permeability Factor Increases Cytosolic Ca2+ and von Willebrand Factor Release in Human Endothelial Cells, Am. J. Pathol. 138, 213–221.

    PubMed  CAS  Google Scholar 

  20. Guo, D., Jia, Q., Song, H.Y., Warren, R.S., and Donner, D.B. (1995) Vascular Endothelial Cell Growth Factor Promotes Tyrosine Phosphorylation of Mediators of Signal Transduction That Contain SH2 Domains. Association with Endothelial Cell Proliferation, J. Biol. Chem. 270, 6729–6733.

    Article  PubMed  CAS  Google Scholar 

  21. Wheeler-Jones, C., Abu-Ghazaleh, R., Cospedal, R., Houliston, R.A., Martin, J., and Zachary, I. (1997) Vascular Endothelial Growth Factor Stimulates Prostacyclin Production and Activation of Cytosolic Phospholipase A2 in Endothelial Cells via P42/P44 Mitogen-Activated Protein Kinase, FEBS Lett. 420, 28–32.

    Article  PubMed  CAS  Google Scholar 

  22. Piomelli, D. (1996) Arachidonic Acid in Cell Signaling, Curr. Opin. Cell Biol. 5, 274–280.

    Article  Google Scholar 

  23. Exton, J.H. (1994) Phosphatidylcholine Breakdown and Signal Transduction, Biochim. Biophys. Acta 1212, 26–42.

    PubMed  CAS  Google Scholar 

  24. Exton, J.H. (1997) Phospholipase D: Enzymology, Mechanisms of Regulation, and Function, Physiol. Rev. 77, 303–320.

    PubMed  CAS  Google Scholar 

  25. Cross, M.J., Roberts, S., Ridley, A.J., Hodgkin, M.N., Stewart, A., Claesson-Welsh, L., and Wakelam, M.J. (1996) Stimulation of Actin Stress Fibre Formation Mediated by Activation of Phospholipase D, Curr. Biol. 6, 588–597.

    Article  PubMed  CAS  Google Scholar 

  26. English, D., Kovala, A.T., Welch, Z., Harvey, K.A., Siddiqui, R.A., Brindley, D.N., and Garcia, J.G. (1999) Induction of Endothelial Cell Chemotaxis by Sphingosine 1-Phosphate and Stabilization of Endothelial Monolayer Barrier Function by Lysophosphatidic Acid, Potential Mediators of Hematopoietic Angiogenesis, J. Hematother. Stem Cell Res. 8, 627–634.

    Article  PubMed  CAS  Google Scholar 

  27. Jaffe, E.A., Nachman, R.L., Becker, C.G., and Minick, C.R. (1973) Culture of Human Endothelial Cells Derived from Umbilical Veins. Identification by Morphologic and Immunologic Criteria, J. Clin. Invest. 52, 2745–2756.

    Article  PubMed  CAS  Google Scholar 

  28. Bligh, E.J., and Dyer, W.J. (1959) A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  29. Shimomura, Y., Sugiyama, S., Takamura, T., Kondo, T., and Ozawa, T. (1986) Quantitative Determination of the Fatty Acid Composition of Human Serum Lipids by High-Performance Liquid Chromatography, J. Chromatogr. 383, 9–17.

    PubMed  CAS  Google Scholar 

  30. Morrison, D.K., Kaplan, D.R., Escobedo, J.A., Rapp, U.R., Roberts, T.M., and Williams, L.T. (1989) Direct Activation of the Serine/Threonine Kinase Activity of Raf-1 Through Tyrosine Phosphorylation by the PDGF Beta-Receptor, Cell 58, 649–657.

    Article  PubMed  CAS  Google Scholar 

  31. Bradford, M.M. (1976) A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  32. D'Angelo, G., Struman, I., Martial, J., and Weiner, R.I. (1995) Activation of Mitogen-Activated Protein Kinases by Vascular Endothelial Growth Factor and Basic Fibroblast Growth Factor in Capillary Endothelial Cells Is Inhibited by the Antiangiogenic Factor 16-kDA N-Terminal Fragment of Prolactin, Proc. Natl. Acad. Sci. USA 92, 6374–6378.

    Article  PubMed  Google Scholar 

  33. Cobb, M.H., and Goldsmith, E.J. (1995) How MAP Kinases Are Regulated, J. Biol. Chem. 270, 14843–14846.

    Article  PubMed  CAS  Google Scholar 

  34. Gliki, G., Abu-Ghazaleh, R., Jezequel, S., Wheeler-Jones, C., and Zachary, I. (2001) Vascular Endothelial Growth Factor-Induced Prostacyclin Production Is Mediated by a Protein Kinase C (PKC)-Dependent Activation of Extracellular Signal-Regulated Protein Kinases 1 and 2 Involving PKC-δ and by Mobilization of Intracellular Ca2+, Biochem. J. 353, 503–512.

    Article  PubMed  CAS  Google Scholar 

  35. Lin, L.L., Wartmann, M., Lin, A.Y., Knopf, J.L., Seth, A., and Davis, R.J. (1993) cPLA2 Is Phosphorylated and Activated by MAP Kinase, Cell 72, 269–278.

    Article  PubMed  CAS  Google Scholar 

  36. Pettitt, T.R., Martin, A., Horton, T., Liossis, C., Lord, J.M., and Wakelam, M.J. (1997) Diacylglycerol and Phosphatidate Generated by Phospholipases C and D, Respectively, Have Distinct Fatty Acid Compositions and Functions. Phospholipase D-Derived Diacylglycerol Does Not Activate Protein Kinase C in Porcine Aortic Endothelial Cells, J. Biol. Chem. 272, 17354–17359.

    Article  PubMed  CAS  Google Scholar 

  37. Seymour, L.W., Shoaibi, M.A., Martin, A., Ahmed, A., Elvin, P., Kerr, D.J., and Wakelam, M.J. (1996) Vascular Endothelial Growth Factor Stimulates Protein Kinase C-Dependent Phospholipase D Activity in Endothelial Cells, Lab. Invest. 75, 427–437.

    PubMed  CAS  Google Scholar 

  38. Exton, J.H. (1997) New Developments in Phospholipase D, J. Biol. Chem. 272, 15579–15582.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio Quagliuolo.

About this article

Cite this article

Boccellino, M., Giovane, A., Servillo, L. et al. Fatty acid mobilized by the vascular endothelial growth factor in human endothelial cells. Lipids 37, 1047–1052 (2002). https://doi.org/10.1007/s11745-002-0999-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-002-0999-7

Keywords

Navigation