Skip to main content
Log in

Simultaneous determination by GC-MS of epoxy and hydroxy FA as their methoxy derivatives

  • Method
  • Published:
Lipids

Abstract

We report on a capillary GC-MS method for the quantitative analysis of hydroxy and epoxy FA. Catalytic hydrogenation of lipid extracts produces stable saturated lipids. Saponification followed by methylation with boron trifluoride in the presence of methanol converts FA to methyl esters and epoxy groups to methoxy-hydroxy groups. These compounds are purified from nonoxidized methyl esters using solid phase extraction. Derivatization of the hydroxy group using tetramethylammonium hydroxide forms methoxy and vicinal dimethoxy FAME. When subjected to El-MS, fragmentation gives two characteristic ion fragments for each epoxy and hydroxy positional isomer. Quantitative measurements were achieved using uniformly labeled hydroxy and epoxy 13C FA as internal standards. Epoxy and hydroxy FA were identified in both plasma and adipose tissue of men, and the levels of hydroxy and epoxy in these tissues were related. The levels of hydroxy isomers were typical of oxidation of linoleic acid, whereas epoxy isomers were characteristic of oxidation of oleic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

amu:

atomic mass units

SIM:

selected ion monitoring

SPE:

solid phase extraction

TMAH:

tetramethylammonium hydroxide

References

  1. de Zwart, L.L., Meerman, J.H., Commandeur, J.N., and Vermeulen, N.P. (1999) Biomarkers of Free Radical Damage Applications in Experimental Animals and in Humans, Free Radic. Biol. Med. 26:202–226.

    Article  PubMed  Google Scholar 

  2. Gutteridge, J.M. (1995) Lipid Peroxidation and Antioxidants as Biomarkers of Tissue Damage, Clin. Chem. 41:1819–1828.

    PubMed  CAS  Google Scholar 

  3. Halliwell, B. (1996) Mechanisms Involved in the Generation of Free Radicals, Pathol. Biol. 44:6–13.

    PubMed  CAS  Google Scholar 

  4. Offord, E., van Poppel, G., and Tyrrell, R. (2000) Markers of Oxidative Damage and Antioxidant Protection: Current Status and Relevance to Disease, Free Radic. Res. 33 (Suppl.), S5-S19.

    PubMed  CAS  Google Scholar 

  5. Moore, K., and Roberts, L.J. (1998) Measurement of Lipid Peroxidation, Free Radic. Res. 28:659–671.

    Article  PubMed  CAS  Google Scholar 

  6. Morrow, J.D., Awad, J.A., Wu, A., Zackert, W.E., Daniel, V.C., and Roberts, L.J. (1996) Nonenzymatic Free Radical-Catalyzed Generation of Thromboxane-like Compounds (isothromboxanes) in vivo, J. Biol. Chem. 271, 23185–23190.

    Article  PubMed  CAS  Google Scholar 

  7. Johnson, J.A., Blackburn, M.L., Bull, A.W., Welsch, C.W., and Watson, J.T. (1997) Separation and Quantitation of Linoleic Acid Oxidation Products in Mammary Gland Tissue from Mice Fed Low- and High-Fat Diets, Lipids 32, 369–375.

    Article  PubMed  CAS  Google Scholar 

  8. Schneider, C., Schreier, P., and Herderich, M. (1997) Analysis of Lipoxygenase-Derived Fatty Acid Hydroperoxides by Electrospray Ionization Tandem Mass Spectrometry, Lipids 32, 331–336.

    Article  PubMed  CAS  Google Scholar 

  9. Hall, L.M., and Murphy, R.C. (1998) Activation of Human Polymorphonuclear Leukocytes by Products Derived from the Peroxidation of Human Red Blood Cell Membranes, Chem. Res. Toxicol. 11, 1024–1031.

    Article  PubMed  CAS  Google Scholar 

  10. Phillips, M., Greenberg, J., and Cataneo, R.N. (2000) Effect of Age on the Profile of Alkanes in Normal Human Breath, Free Radical. Res. 33, 57–63.

    Article  CAS  Google Scholar 

  11. Moghaddam, M.F., Motoba, K., Borhan, B., Pinot, F., and Hammock, B.D. (1996) Novel Metabolic Pathways for Linoleic and Arachidonic Acid Metabolism, Biochim. Biophys. Acta 1290, 327–339.

    PubMed  Google Scholar 

  12. Moghaddam, M.F., Grant, D.F., Cheek, J.M., Greene, J.F., Williamson, K.C., and Hammock, B.D. (1997) Bioactivation of Leukotoxins to Their Toxic Diols by Epoxide Hydrolase, Nature Med. 3, 562–566.

    Article  PubMed  CAS  Google Scholar 

  13. Oliw, E.H. (1994) Oxygenation of Polyunsaturated Fatty Acids by Cytochrome P450 Monooxygenases Prog. Lipid Res. 33, 329–354.

    Article  PubMed  CAS  Google Scholar 

  14. Kleinman, R., and Spencer, G.F. (1972) Gas Chromatography-Mass Spectroscopy of Methyl Esters of Unsaturated Oxygenated Fatty Acids, J. Am. Oil Chem. Soc. 50, 31–38.

    Google Scholar 

  15. Oliw, E.H. (1985) Analysis of Epoxyeicostrienoic Acids by Gas Chromatography-Mass Spectrometry Using Chlorohydrin Adducts, J. Chromatogr. 339, 175–181.

    CAS  Google Scholar 

  16. VanRollins, M., and Knapp, H.R. (1995) Identification of Arachidonate Epoxides/Diols by Capillary Chromatography-Mass Spectrometry, J. Lipid Res. 36, 952–966.

    PubMed  CAS  Google Scholar 

  17. Fang, X., Kaduce, T.L., Weintraub, N.L., VanRollins, M., and Spector, A.A. (1996) Functional Implications of a Newly Characterized Pathway of 11,12-Epoxyeicosatrienoic Acid Metabolism in Arterial Smooth Muscle, Circ. Res. 79, 784–793.

    PubMed  CAS  Google Scholar 

  18. Yamane, M., Abe, A., and Yamane, S. (1994) High-Performance Liquid Chromatography-Thermospray Mass Spectrometry of Epoxy Polyunsaturated Fatty Acids and Epoxyhydroxy Polyunsaturated Fatty Acids from an Incubation Mixture of Rat Tissue Homogenate, J. Chromatogr. B 652, 123–136.

    CAS  Google Scholar 

  19. Ulsaker, G.A., and Teien, G. (1983) Gas Chromatographic-Mass Spectrometric Identification of 9,10-Epoxystearate in Human Blood, Analyst 108, 521–524.

    Article  PubMed  CAS  Google Scholar 

  20. Ulsaker, G.A., and Teien, G. (1986) Gas Chromatographic-Mass Spectrometric Identification of 9,10-Epoxyoctadeca-12-enoate Ester and 12,13-Epoxyoctadeca-9-enoate Ester in Human Blood, Analyst 111, 559–561.

    Article  PubMed  CAS  Google Scholar 

  21. Ulsaker, G.A., and Teien, G. (1995) Identification of 9,10-Epoxyoctadecanoic Acid in Human Urine Using Gas Chromatography-Mass Spectrometry, Biomed. Chromatogr. 9, 183–187.

    Article  PubMed  CAS  Google Scholar 

  22. Dudda, A., Spiteller, G., and Kobelt, F. (1996) Lipid Oxidation Products in Ischemic Porcine Heart Tissue, Chem. Phys. Lipids 82, 39–51.

    Article  PubMed  CAS  Google Scholar 

  23. Wilson, R., Smith, R., Wilson, P., Shepherd, M.J., and Riemersma, R.A. (1997) Quantitative Gas Chromatography-Mass Spectrometry Isomer-Specific Measurement of Hydroxy Fatty Acids in Biological Samples and Food as a Marker of Lipid Peroxidation, Anal. Biochem. 248, 76–85.

    Article  PubMed  CAS  Google Scholar 

  24. Christie, W.W. (1982) The Preparation of Derivatives of Lipids, in Lipid Analysis (Christie, W.W., ed.), pp. 51–61, Pergamon Press, Oxford.

    Google Scholar 

  25. Gardner, H.W. (1997) Analysis of Plant Lipoxygenase Metabolites, in Advances in Lipid Methodology Four (Christie, W.W., ed.), pp. 1–44, The Oily Press, Dundee, Scotland.

    Google Scholar 

  26. Christie, W.W. (1997) Structural Analysis of Fatty Acids, in Advances in Lipid Methodology Four (Christie, W.W., ed.), pp. 119–169, The Oily Press, Dundee, Scotland.

    Google Scholar 

  27. Logan, R.L., Riemersma, R.A., Thomson, M., Oliver, M.F., Olson, A.G., Walldius, G., Rossner, S., Kaijser, L., Callmer, E., Carlson, L.A., et al. (1978) Risk Factors for Ischaemic Heart-Disease in Normal Men Aged 40. Edinburgh-Stockholm Study. Lancet 1, 949–954.

    Article  PubMed  CAS  Google Scholar 

  28. Wilson, R., Lyall, K., Smyth, L., Fernie, C.E., and Riemersma, R.A. (2002) Dietary Hydroxy Fatty Acids Are Absorbed in Humans—Implications for the Measurement of ‘Oxidative Stress’ in vivo, Free Radic. Biol. Med. 32, 162–168.

    Article  PubMed  CAS  Google Scholar 

  29. Kubow, S. (1992) Routes of Formation and Toxic Consequences of Lipid Oxidation Products in Foods, Free Radic. Biol. Med. 12, 63–81.

    Article  PubMed  CAS  Google Scholar 

  30. Wilson, R., Fernie, C.E., Scrimgeour, C.M., Lyall, K., Smyth, L., and Riemersma, R.A. (2002) Dietary Epoxy Fatty Acids Are Absorbed in Healthy Women, Eur. J. Clin. Invest. 32, 79–83.

    Article  PubMed  CAS  Google Scholar 

  31. Nourooz-Zadeh, J., Tajaddini-Sarmadi, J., Ling, K.E., and Wolff, S.P. (1996) Low-Density Lipoprotein Is the Major Carier of Lipid Hydroperoxides in Plasma. Relevance to Determination of Total Plasma Lipid Hydroperoxide Concentrations, Biochem. J. 313, 781–786.

    PubMed  CAS  Google Scholar 

  32. Zamburlini, A., Maiorino, M., Barbera, P., Roveri, A., and Ursini, F. (1995) Direct Measurement by Single Photon Counting of Lipid Hydroperoxides in Human Plasma and Lipoproteins, Anal. Biochem. 232, 107–113.

    Article  PubMed  CAS  Google Scholar 

  33. Castle, L., Mayo, A., and Gilbert, J. (1990) Migration of Epoxidized Soya Bean Oil into Foods from Retail Packaging Materials and from Plasticised PVC Film Used in the Home, Food Addit. Contam. 7, 29–36.

    PubMed  CAS  Google Scholar 

  34. Blee, E., and Schuber, F. (1990) Efficient Epoxidation of Unsaturated Fatty Acids by a Hydroperoxide-Dependent Oxygenase, J. Biol. Chem. 265, 12887–12894.

    PubMed  CAS  Google Scholar 

  35. Carpenter, K.L., Taylor, S.E., Ballantine, J.A., Fussell, B., Halliwell, B., and Mitchinson, M.J. (1993) Lipids and Oxidized Lipids in Human Atheroma and Normal Aorta, Biochim. Biophys. Acta 1167, 121–130.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Wilson.

About this article

Cite this article

Wilson, R., Lyall, K. Simultaneous determination by GC-MS of epoxy and hydroxy FA as their methoxy derivatives. Lipids 37, 917–924 (2002). https://doi.org/10.1007/s11745-002-0980-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-002-0980-5

Keywords

Navigation