Skip to main content
Log in

A direct method for regiospecific analysis of TAG using α-MAG

  • Methods
  • Published:
Lipids

Abstract

An analytical procedure was developed for regiodistribution analysis of TAG using α-MAG prepared by an ethyl magnesium bromide deacylation. In the present communication, the deacylation procedure is shown to lead to representative α-MAG, allowing the composition of the native TAG in the α-position to be determined directly. The composition in the β-position can then be estimated from the composition of the α-MAG and TAG according to the formula, 3×TAG-2×α-MAG. The estimates are superior to those obtained using the α,β-DAG and Brockerhoff calculations as they come closer to the theoretical value and have smaller SD. The present procedure, first demonstrated on a synthetic TAG, was then successfully applied to the analysis of borage oil, milkfat, and tuna oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCF:

2′,7′-dichlorofluorescein

POP:

sn-1,3-dipalmitoleyl-sn-2-oleoyl-glycerol

References

  1. Takagi, T., and Ando, Y. (1991) Stereospecific Analysis of Triacyl-sn-glycerols by Chiral High-Performance Liquid Chromatography, Lipids 26, 542–547.

    CAS  Google Scholar 

  2. Becker, C.C., Rosenquist, A., and Holmer, G. (1993) Regiospecific Analysis of Triacylglycerols Using Allyl Magnesium Bromide, Lipids 28, 147–149.

    Google Scholar 

  3. Ando, Y., and Takagi, T. (1999) Micro Method for Stereospecific Analysis of Triacyl-sn-glycerols by Chiral-Phase High-Performance Liquid Chromatography, J. Am. Oil Chem. Soc. 70, 1047–1049.

    Google Scholar 

  4. Angers, P., and Arul, J. (1999) A Simple Method for Regiospecific Analysis of Triacylglycerols by Gas Chromatography, J. Am. Oil Chem. Soc. 76, 481–484.

    CAS  Google Scholar 

  5. Entressangles, B., Pasero, L., Savary, P., Sarda, L., and Desnuelle, P. (1961) Influence de la nature des chaînes sur la vitesse de leur hydrolyse par la lipase pancréatique, Bull. Soc. Chim. Biol. 43, 581–585.

    PubMed  CAS  Google Scholar 

  6. Lawson, L.D., and Hughes, B.G. (1988) Triacylglycerol Structure of Plant and Fungal Oils Containing γ-Linolenic Acid, Lipids 23, 313–317.

    CAS  Google Scholar 

  7. Brockerhoff, H. (1965) Stereospecific Analysis of Triglycerides: An Analysis of Human Depot Fat, Arch. Biochem. Biophys. 110, 586–590.

    Article  PubMed  CAS  Google Scholar 

  8. Bottino, N.R., Vandenburg, G.A., and Reiser, R. (1967 Resistance of Certain Long-Chain Polyunsaturated Fatty Acids of Marine Oils to Pancreatic Lipase Hydrolysis, Lipids 2, 489–493.

    CAS  Google Scholar 

  9. Yurkowski, M., and Brockerhoff, H. (1966) Fatty Acid Distribution of Triglycerides Determined by Deacylation with Methyl Magnesium Bromide, Biochim. Biophys. Acta 125, 55–59.

    PubMed  CAS  Google Scholar 

  10. Brockerhoff, H. (1967) Stereospecific Analysis of Triglycerides: An Alternative Method, J. Lipid Res. 8, 167–169.

    PubMed  CAS  Google Scholar 

  11. Christie, W.W., and Moore, J.H. (1969) A Semimicro Method for the Stereospecific Analysis of Triglycerides, Biochim. Biophys. Acta 176, 445–452.

    PubMed  CAS  Google Scholar 

  12. Christie, W.W. (1982) Lipid Analysis, pp. 155–161, Pergamon Press, Oxford.

    Google Scholar 

  13. Brockerhoff, H. (1971) Stereospecific Analysis of Triglycerides, Lipids 6, 942–956.

    PubMed  CAS  Google Scholar 

  14. Luddy, F.E., Barfield, R.A., Herb, S.F., Magidman, P., and Riemenschneider, R.W. (1963) Pancreatic Lipase Hydrolysis of Triglycerides by a Semimicro Technique, J. Am. Oil Chem. Soc. 41, 693–696.

    Google Scholar 

  15. Thomas, A.E., III, Scharoun, J.E., and Ralston, H. (1965) Quantitative Estimation of Isomeric Monoglycerides by Thin-Layer Chromatography, J. Am. Oil Chem. Soc. 42, 789–792.

    CAS  Google Scholar 

  16. Morrison, W.R., and Smith, L.M. (1964) Preparation of Fatty Acid Methyl Esters and Dimethylacetals from Lipids with Boron Fluoride-Methanol, J. Lipid Res. 5, 600–608.

    PubMed  CAS  Google Scholar 

  17. Christie, W.W., and Claperton, J.L. (1982) Structures of the Triglycerides of Cow's Milk, Fortified Milks (including infant formulae), and Human Milk, J. Soc. Dairy Technol. 35, 22–24.

    CAS  Google Scholar 

  18. Ozenne, C. (1993) Biofaçonnement de la matière grasse laitière, Ph.D. Thesis, University of Montpellier II, France, pp. 119–132.

    Google Scholar 

  19. Ando, Y., Ota, T., and Yazawa, K. (1996) Stereospecific Analysis of Triacyl-sn-glycerols in Docosahexaenoic Acid-rich Fish Oils, J. Am. Oil Chem. Soc. 73, 483–487.

    CAS  Google Scholar 

  20. Ando, Y., Satake, M., and Takahashi, Y. (2000) Reinvestigation of Positional Distribution of Fatty Acids in Docosahexaenoic Acid-rich Fish Oil Triacyl-sn-glycerols, Lipids 35, 579–582.

    Article  PubMed  CAS  Google Scholar 

  21. Larsson, K., and Quinn, P.J. (1994) Physical Properties: Structural and Physical Characteristics, in The Lipid Handbook, 2nd edn., pp. 443–446, Chapman and Hall, London.

    Google Scholar 

  22. Angers, P., and Arul, J. (2000) Determination of Selectivity of Grignard Reagents in Partial Deacylation Reactions of Triacylglycerols by Gas Chromatography, inform 11, S58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Turon.

About this article

Cite this article

Turon, F., Bachain, P., Caro, Y. et al. A direct method for regiospecific analysis of TAG using α-MAG. Lipids 37, 817–821 (2002). https://doi.org/10.1007/s11745-002-0966-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-002-0966-3

Keywords

Navigation