Skip to main content
Log in

Effect of fenitrothion on the physical properties of crustacean lipoproteins

  • Articles
  • Published:
Lipids

An Erratum/Clarification to this article was published on 01 August 2002

Abstract

The effect of the liposoluble organophosphorus insecticide fenitrothion (FS) on lipid packing and rotation of two crustacean plasma HDL was investigated. These lipoproteins, HDL-1 and HDL-2, differed in their lipid composition, but their lipid/protein ratios were similar. The rotational behavior of the fluorescent probes 1,6-diphenyl-1,3,5-hexatriene (DPH) and 3-(p-(6-phenyl)-1,3,5-hexatrienyl) phenylpropionic acid (DPH-PA) was used to obtain information about the lipid dynamics in the outer and inner regions, respectively, of the lipid phase of the lipoproteins. Fluorescent steady-state anisotropy (r s), lifetime (τ), rotational correlation time (τr), and the limiting anisotropy (r ) of these probes were measured in the lipoproteins exposed to different concentrations of FS in vitro. The results showed the penetration of FS into both plasma lipoproteins, altering the lipid dynamics of the inner as well as the outer regions. The overall effect of the insecticide was to induce an increase in the lipid order in a concentration-dependent fashion. DPH and DPH-PA fluorescence-lifetime shortening indicated that FS increased the polarity of the probe environment, suggesting an enhanced water penetration into the lipoprotein lipid phase, may be due to the induction of failures in the lipid packing. Even in the absence of FS, a higher ordering of the lipid phase was found in HDL-2 compared to HDL-1, a fact that might be attributed to a higher percentage of sphingomyelin in HDL-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Δ:

polarized phase shift

DPH:

1,6-diphenyl-1,3,5-hexatriene

DPH-PA:

3-(p-(6-phenyl)-1,3,5-hexatrienyl) phenylpropionic acid

FPLC:

fast-flow protein liquid chromatography

FS:

fenitrothion

r 0 :

fundamental anisotropy

r s :

steady-state anisotropy

r :

limiting anisotropy

τ:

lifetime

τ M :

modulation lifetime

τ p :

phase lifetime

τ r :

rotational correlation time

References

  1. Narahashi, T. (1982) Cellular and Molecular Mechanisms of Action of Insecticides: Neurophysiological Approach, Neurobehav. Toxicol. Teratol. 4, 753–758.

    PubMed  CAS  Google Scholar 

  2. Omkar, G.S., and Shukla, G.S. (1985) Nature of Dichlorvos Intoxication in a Freshwater Prawn, Macrobrachium Lamarrei (H. Milne Edwards), Environ. Research 37, 349–354.

    Article  CAS  Google Scholar 

  3. Antunes-Madeira, M.C., And Madeira, V.M.C. (1984) Partition of Parathion in Synthetic and Native Membranes, Biochim. Biophys. Acta 778, 49–56.

    Article  PubMed  CAS  Google Scholar 

  4. Purshottam, T., and Srivastava, R.K. (1987) Parathion Toxicity in Relation to Liver Microsomal Oxidases, Lipid Composition and Fluidity, Pharmacology 35, 227–233.

    Article  PubMed  CAS  Google Scholar 

  5. Antunes-Madeira, M.C., Videira, R.A., and Madeira, V.M. (1994) Effects of Parathion on Membrane Organization and Its Implications for the Mechanisms of Toxicity, Biochim. Biophys. Acta 1190, 149–154.

    Article  PubMed  CAS  Google Scholar 

  6. González-Baró, M.R., Garda, H., and Pollero, R.J. (1997) Effect of Fenitrothion on Hepatopancreas Membrane Fluidity in Macrobrachium Borellii, Pest. Biochem. Physiol. 58, 133–143.

    Article  Google Scholar 

  7. Blasiak, J. (1993) Changes in the Fluidity of Model Lipid Membranes Evoked by the Organophosphorus Insecticide Methylbromfenvinfos, Acta Biochim. Pol. 40, 39–41.

    PubMed  CAS  Google Scholar 

  8. González-Baró, M.R., Garda, H., and Pollero, R.J. (2000) Effect of Fenitrothion on Dipalmitoyl and 1-Palmitoyl-2-oleoylphosphatidylcholine Bilayers, Biochim. Biophys. Acta 1468, 304–310.

    Article  PubMed  Google Scholar 

  9. Lee, R.F. (1991) Lipoproteins from the Hemolymph and Ovaries of Marine Invertebrates, in Advances in Comparative and Environmental Physiology (Gilles, R., ed.), Vol. 7, pp. 187–208. Springer-Verlag, London.

    Google Scholar 

  10. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  11. Cunningham, M., And Pollero, R.J. (1996) Characterization of Lipoprotein Fractions with High Content of Hemocyanin in the Hemolymphatic Plasma of Polybetes Pythagoricus J. Exp. Zool. 274, 275–280.

    Article  CAS  Google Scholar 

  12. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  13. Lakowicz, J.R., Prendergast, F.G., and Hogen, D. (1979) Differential Polarized Phase Fluorometric Investigations of Diphenylhexatriene in Lipid Bilayers. Quantitation of Hindered Depolarizing Rotations, Biochemistry 18, 508–519.

    Article  PubMed  CAS  Google Scholar 

  14. Lakowicz, J.R. (1983) Principles of Fluorescence Spectroscopy, pp. 52–95, 156–188, Plenum Press, New York.

    Google Scholar 

  15. Tricerri, M.A., Garda, H.A., and Brenner, R.R. (1994) Lipid Chain Order and Dynamics at Different Bilayer Depths in Liposomes of Several Phosphatidylcholines Studied by Differential Polarized Phase Fluorescence, Chem. Phys. Lipids 71, 61–72.

    Article  PubMed  CAS  Google Scholar 

  16. Garda, H.A., Bernasconi, A.M., and Brenner, R.R. (1994) Possible Compensation of Structural and Viscotropic Properties in Hepatic Microsomes and Erythrocyte Membranes of Rats with Essential Fatty Acid Deficiency, J. Lipid Res. 35, 1367–1377.

    PubMed  CAS  Google Scholar 

  17. Spencer, R.D., and Weber, G. (1970) Influence of Brownian Rotations and Energy Transfer upon the Measurements of Fluorescence Lifetime, J. Chem. Phys. 52, 1654–1663.

    Article  CAS  Google Scholar 

  18. Lakowicz, J.R., and Cherek, H. (1980) Dipolar Relaxation in Proteins on the Nanosecond Timescale Observed by Wave-length-Resolved Phase Fluorometry of Tryptophan Fluorescence, J. Biol. Chem. 255, 831–834.

    PubMed  CAS  Google Scholar 

  19. Lakowicz, J.R., Cherek, H., and Bevan, D.R. (1980) Demonstration of Nanosecond Dipolar Relaxation in Biopolymers by Inversion of the Apparent Fluorescence Phase Shift and Demodulation Lifetimes, J. Biol. Chem. 255, 4403–4406.

    PubMed  CAS  Google Scholar 

  20. Garda, A., Bernasconi, A.M., and Brenner, R.R. (1994) Influence of Membrane Proteins on Lipid Matrix Structure and Dynamics. A Differential Polarized Phase Fluorescence Study in Rat Liver Microsomes and Erythrocyte Membranes, An. Asoc. Quim. Arg. 82, 305–323.

    CAS  Google Scholar 

  21. Weber, G. (1978) Limited Rotational Motion: Recognition by Differential Phase Fluorometry, Acta Phys. Pol. A 54, 173–179.

    Google Scholar 

  22. Omann, G.M., and Lakowicz, J.R. (1982) Interactions of Chlorinated Hydrocarbon Insecticides with Membranes, Biochim. Biophys. Acta 684, 83–95.

    Article  PubMed  CAS  Google Scholar 

  23. Stelzer, K.J., and Gordon, M.A. (1985) Interactions of Pyrethroids With Phosphatidylcholine Liposomal Membranes, Biochim. Biophys. Acta 812, 361–368.

    Article  PubMed  CAS  Google Scholar 

  24. Perez-Albarsanz, M.A., Lopez-Aparicio, P., Senar, S., and Recio, M.N. (1991) Effects of Lindane on Fluidity and Lipid Composition in Rat Renal Cortex Membranes, Biochim. Biophys. Acta 1066, 124–130.

    Article  PubMed  CAS  Google Scholar 

  25. Lopez-Aparicio, P., Recio, M.N., Prieto, J.C., Carmena, M.J., and Perez-Albarsanz, M.A. (1991) Effect of Lindane upon the Beta-Adrenergic Stimulation of Cyclic AMP Accumulation in Rat Renal Cortical Tubules Caused by Alterations in Membrane Fluidity, Life Sci. 49, 1141–1154.

    Article  PubMed  CAS  Google Scholar 

  26. Sarkar, S.N., Balasubramanian, S.V., and Sikdar, S.K. (1993) Effect of Fenvalerate, a Pyrethroid Insecticide, on Membrane Fluidity, Biochim. Biophys. Acta 1147, 137–142.

    Article  PubMed  CAS  Google Scholar 

  27. Mova-Quiles, M.R., Munoz-Delgado, E., and Vidal, C.J. (1994) Interactions of the Pyrethroid Insecticide Allethrin with Liposomes, Arch. Biochem. Biophys. 312, 95–100.

    Article  Google Scholar 

  28. Antunes-Madeira, M.C., and Madeira, V.M. (1986) Partition of DDT in Synthetic and Native Membranes, Biochim. Biophys. Acta 861, 159–164.

    PubMed  CAS  Google Scholar 

  29. Antunes-Madeira, M.C., and Madeira, V.M. (1989) Membrane Fluidity as Affected by the Insecticide Lindane, Biochim. Biophys. Acta 982, 161–166.

    Article  PubMed  CAS  Google Scholar 

  30. Antunes-Madeira, M.A., and Madeira, V.M. (1990) Membrane Fluidity as Affected by the Organochlorine Insecticide DDT, Biochim. Biophys. Acta 1023, 469–474.

    Article  PubMed  CAS  Google Scholar 

  31. Antunes-Madeira, M.C., Almeida, L.M., and Madeira, V.M. (1990) Effects of Lindane on Membrane Fluidity: Intramolecular Excimerization of a Pyrene Derivative and Polarization of Diphenylhexatriene, Biochim. Biophys. Acta 1022, 110–114.

    Article  PubMed  CAS  Google Scholar 

  32. Antunes-Madeira, M.C., Almeida, L.M., and Madeira, V.M. (1993) Depth-Dependent Effects of DDT and Lindane on the Fluidity of Native Membranes and Extracted Lipids. Implications for Mechanisms of Toxicity, Bull. Environ. Contam. Toxicol. 51, 787–794.

    Article  PubMed  CAS  Google Scholar 

  33. Antunes-Madeira, M.C., and Madeira, V.M. (1993) Effects of DDE on the Fluidity of Model and Native Membranes: Implications for the Mechanisms of Toxicity, Biochim. Biophys. Acta 1149, 86–92.

    Article  CAS  Google Scholar 

  34. Videira, R.A., Antunes-Madeira, M.C., Custodio, J.B., and Madeira, V.M. (1995) Partition of DDE in Synthetic and Native Membranes Determined by Ultraviolet Derivative Spectroscopy, Biochim. Biophys. Acta 1238, 22–28.

    Article  PubMed  Google Scholar 

  35. Barenholz, Y. (1984) Sphingomyelin-Lecithin Balance in Membranes, in Physiology of Membrane Fluidity (Shinitzky, M., ed.), Vol. 1, pp. 131–173, CRC Press, Boca Raton.

    Google Scholar 

  36. Lund-Katz, S., Laboda, H.M., McLean, L.R., and Phillips, M.C. (1988) Influence of Molecular Packing and Phospholipid Type on Rates of Cholesterol Exchange, Biochemistry 27, 3416–3423.

    Article  PubMed  CAS  Google Scholar 

  37. Sommer, A., Prenner, E., Gorges, R., Stutz, H., Grillhofer, H., Kostner, G.M., Paltauf, F., and Hermetter, A. (1992) Organization of Phosphatidylcholine and Sphingomyelin in the Surface Monolayer of Low Density Lipoprotein and Lipoprotein (a) as Determined by Time-Resolved Fluorometry, J. Biol. Chem. 267, 24217–24222.

    PubMed  CAS  Google Scholar 

  38. Lottin, H., Motta, C., and Simard, G. (1996) Differential Effects of Glycero- and Sphingo-phospholipolysis on Human High-Density Lipoprotein Fluidity, Biochim. Biophys. Acta 1301, 127–132.

    PubMed  Google Scholar 

  39. Subbaiah, P., Subramanian, V., and Wang, K. (1999) Novel Physiological Function of Sphingomyelin in Plasma, J. Biol. Chem. 274, 26409–36414.

    Article  Google Scholar 

  40. Garcia, F., Gonzalez-Baro, M., and Pollero, R. (2002) Transfer of Lipids Between Hemolymph and Hepatopancreas in the Shrimp Macrobrachium borelli, Lipids 37, 581–585.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Garda.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11745-002-0968-1.

About this article

Cite this article

Garcia, C.F., Cunningham, M., González-Baró, M.R. et al. Effect of fenitrothion on the physical properties of crustacean lipoproteins. Lipids 37, 673–679 (2002). https://doi.org/10.1007/s11745-002-0948-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-002-0948-5

Keywords

Navigation