Skip to main content
Log in

Action of 1-(11-selenadodecyl)-glycerol and 1-(11-selenadodecyl)-3-trolox-glycerol against lipid peroxidation

  • Articles
  • Published:
Lipids

Abstract

The antioxidant action on lipid peroxidation of the synthesized selenium compounds 1-(11-selenadodecyl)-glycerol (SeG) and 1-(11-selenadodecyl)-3-Trolox-glycerol (SeIrG, where Trolox=6-hydroxyl-2,5,7,8-tetramethylchroman-2-carboxylic acid) was investigated. We compared the reactivity of the selenium compounds toward peroxyl radicals and their inhibitory effect on lipid peroxidation, induced by several kinds of initiating species such as azo compounds, metal ions, and superoxide/nitric oxide in solution, micelles, membranes, and rat plasma. SeTrG, but not SeG, scavenged peroxyl radicals. SeG reduced methyl linoleate hydroperoxides in organic solution and in methyl linoleate micelles oxidized by ferrous ion (Fe2+)/ascorbic acid. In rat plasma SeG and SeTrG decreased the formation of lipid hydroperoxides generated by hydrophilic azo compounds. SeG and SeTrG spared α-tocopherol (α-TOH) consumption in multilamellar vesicle membranes oxidized by hydrophilic or lipophilic initiators, and only SeTrG spared α-TOH in superoxide/nitric oxide oxidized membranes. In rat plasma oxidized by radical initiators (either hydrophilic or lipophilic) or superoxide/nitric oxide, SeTrG suppressed α-TOH consumption, but SeG had no effect. The two selenium-containing compounds showed inhibitory effects on lipid peroxidation that depended on their structure, the medium where they acted, and the oxidant used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

absorbance

AA:

ascorbic acid

AAPH:

2,2′-azobis(2-amidinopropane) dihydrochloride

AMVN:

2,2′-azobis(2,4-dimethyl-valeronitrile)

CA:

caffeic acid

DOPAC:

3,4-dihydroxyphenylacetic acid

DPBQ:

N,N′-diphenyl-p-benzoqninone diimine

DPPD:

N,N′-diphenyl-p-phenylendiamine

ebselen:

2-phenyl-1,2-benzoisoselenazol-3(2H)-one

MeO-AMVN:

2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile)

MeLOH:

methyl linoleate alcohols

MeLOOH:

methyl linoleate hydroperoxides

MLV:

multilamellar vesicles

PMC:

2,2,5,7,8-pentamethyl-6-chromanol

SeG:

1-(11-selenadodecyl)-glycerol

SeTrG:

1-(11-selenadodecyl)-3-Troloxglycerol

SIN:

1,3-morpholinosydnonimine hydrochloride

Trolox:

6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid

α-TOH:

α-tocopherol

Tox-3:

tocotrienols

References

  1. Rayman, M.P. (2000) The Importance of Selenium to Human Health, Lancet 356, 233–241.

    Article  PubMed  CAS  Google Scholar 

  2. Flohe, L., Andreesen, J.R., Brigelius-Flohe, R., Maiorino, M., and Ursini, F. (2000) Selenium, the Element of the Moon, in Life on Earth, IUBMB Life 49, 411–420.

    Article  PubMed  CAS  Google Scholar 

  3. Parnham, M.J. (1996) The Pharmaceutical Potential of Selenoorganic Compounds, Exp. Opin. Invest. Drugs 5, 861–870.

    Article  CAS  Google Scholar 

  4. Mugesh, G., du Mont, W.W., and Sies, H. (2000) Chemistry of Biologically Important Synthetic Organoselenium Compounds, Chem. Rev. 7, 2125–2179.

    Google Scholar 

  5. Feroci, G., and Fini, A. (1998) Study on the Antioxidant Effect of Several Selenium and Sulphur Compounds, J. Trace Elem. Med. Biol. 12, 96–100.

    PubMed  CAS  Google Scholar 

  6. Müller, A., Cadenas, E., Graf, P., and Sies, H. (1984) A Novel Biologically Active Seleno-Organic Compound—I. Glutathione Peroxidase-like Activity in vitro and Antioxidant Capacity of PZ 51 (ebselen), Biochem. Pharmacol. 33, 3235–3239.

    Article  PubMed  Google Scholar 

  7. Noguchi, N., Yoshida, Y., Kaneda, H., Yamamoto, Y., and Niki, E. (1992) Action of Ebselen as an Antioxidant Against Lipid Peroxidation, Biochem. Pharmacol. 44, 39–44.

    Article  PubMed  CAS  Google Scholar 

  8. Lass, A., Witting, P., Sticker, R., and Esterbauer, H. (1996) Inhibition of Copper-and Peroxyl Radical-Induced LDL Lipid Oxidation by Ebselen: Antioxidant Actions in Addition to Hydroperoxide-Reducing Activity, Biochim. Biophys. Acta 1303, 111–118.

    PubMed  Google Scholar 

  9. Muna, Z.A., Bolann, B.J., Chen, X., Songstad, J., and Berge, R.K. (2000) Tetradecylthioacetic Acid and Tetradecylselenoacetic Acid Inhibit Lipid Peroxidation and Interact with Superoxide Radical, Free Radic. Biol. Med. 28, 1068–1078.

    Article  PubMed  CAS  Google Scholar 

  10. Yanishlieva, N., Raneva, V., Murinova, E., Houte, H., Partali, V., and Sliwka, H.R. (2001) 11-Selenadodecylglyceryl-1-ether in Lipid Autoxidation, J. Am. Oil Chem. Soc. 78, 691–696.

    CAS  Google Scholar 

  11. Naalsund, T., Malterud, K.E., Partali, V., and Sliwka, H.R. (2001) Synthesis of a Triantioxidant Compound: Combination of β-Apo-8′-carotenoic Acid, Selenachpryloic Acid and Trolox in a Triglyceride, Chem. Phys. Lipids 112, 59–65.

    Article  PubMed  CAS  Google Scholar 

  12. Arteel, G.E., and Sies, H. (2001) The Biochemistry of Selenium and the Glutathione System, Environm. Toxicol. Pharmacol. 10, 153–158.

    Article  CAS  Google Scholar 

  13. Kondo, H., Takahashi, M., and Niki, E. (1997) Peroxynitrite-Induced Hemolysis of Human Erythrocytes and Its Inhibition by Antioxidants, FEBS Lett. 413, 236–238.

    Article  PubMed  CAS  Google Scholar 

  14. Takabe, W., Niki, E., Uchida, K., Yamada, S., Satoh, K., and Noguchi, N. (2001) Oxidative Stress Promotes the Development of Transformation: Involvement of a Potent Mutagenic Lipid Peroxidation Product, Acrolein, Carcinogenesis 22, 935–941.

    Article  PubMed  CAS  Google Scholar 

  15. Borel, C. (2001) Antioxidant Health Effects of Aged Garlic Extract, J. Nutr. 131, 1010S-1015S.

    Google Scholar 

  16. Pillai, S.P., Mitscher, L.A., Menon, S.R., Pillai, C.A., and Shankel, D.M. (1999) Antimutagenic/Antioxidant Activity of Green Tea Components and Related Components, J. Environ. Pathol. Toxicol. Oncol. 18, 147–158.

    PubMed  CAS  Google Scholar 

  17. Maiorino, M., Coassin, M., Roveri, A., and Ursini, F. (1989) Microsomal Lipid Peroxidation: Effect of Vitamin E and Its Functional Interaction with Phospholipid Hydroperoxide Glutathione Peroxidase, Lipids 24, 721–726.

    PubMed  CAS  Google Scholar 

  18. Helzlsouer, K.J., Huang, H.Y., Alberg, A.J., Hoffman, S., Burke, A., Norkus, E.P., Morris, J.S., and Comstock, G.W. (2000) Association Between α-Tocopherol, γ-Tocopherol, Selenium, and Subsequent Prostate Cancer, J. Natl. Cancer Inst. 92, 2018–2023.

    Article  PubMed  CAS  Google Scholar 

  19. Mutlu-Türkoglu, Ü., Erbil, Y., Öztezcan, S., Olgaç, V., Toker, G., and Uysal, M. (2000) The Effect of Selenium and/or Vitamin E Treatments on Radiation-Induced Intestinal Injury in Rats, Life Sci 66, 1905–1913.

    Article  PubMed  Google Scholar 

  20. Shokri, F., Heidari, M., Gharagozloo, S., and Ghazi-Khansari, M. (2000) In vitro Inhibitory Effects of Antioxidants on Cytotoxicity of T-2 Toxin, Toxicol. 146, 171–176.

    Article  CAS  Google Scholar 

  21. Houte, H., Partali, V., Sliwka, H.R., and Quartey, E.G.K. (2000) Synthesis of Structured Lipids and Ether Lipids with Antioxidants: Combination of a Selena Fatty Acid and a Selena Fatty Alcohol with a Carotenoid Acid in Glyceride Molecule, Chem. Phys. Lipids 105, 105–114.

    Article  PubMed  CAS  Google Scholar 

  22. Noguchi, N., Yamashita, H., Gotoh N., Yamamoto, Y., Numano, R., and Niki, E. (1998) 2,2′-Azobis(4-Methoxy-2,4-dimethylvaleronitrile), a New Lipid-Soluble Azo Initiator: Application to Oxidations of Lipids and Low-Density Lipoprotein in Solution and in Aqueous Dispersions, Free Radic. Biol. Med. 24, 259–268.

    Article  PubMed  CAS  Google Scholar 

  23. Gotoh, N., Noguchi, N., Tsuchiya, J., Morita, K., Sakai, H., Shimasaki, H., and Niki, E. (1996) Inhibition of Oxidation of Low Density Lipoprotein by Vitamin E and Related Compounds, Free Rad. Res. 24, 123–134.

    CAS  Google Scholar 

  24. Abe, K., and Katsui, G. (1975) Determination of Tocopherols in Serum by High Speed Liquid Chromatography, Vitamins (Japan) 49, 259–263.

    CAS  Google Scholar 

  25. Abe, K., Ohmae, M., and Katsui, G. (1976) Rapid and Micro-Method for Determination of Tocopherols in Liver, Vitamins (Japan) 50, 453–457.

    CAS  Google Scholar 

  26. Shabit, J., Ishida, Y., Shimasaki, H., and Ueta, N. (1998) Biological Tissue Damage Induced by AMVN [2,2′-Azobis-(2,4-dimethylvaleronitrile)] and Its Inhibition by α-Tocopherol in Rats, Teikyo Medical Journal 21, 211–218.

    CAS  Google Scholar 

  27. Niki, E., Noguchi, N., Tsuchihashi, H., and Gotoh, N. (1995) Interaction Among Vitamin C, Vitamin E, and β-Carotene, Am. J. Clin. Nutr. 62, 1322S-1326S.

    PubMed  CAS  Google Scholar 

  28. Noguchi, N., Nishino, K., and Niki, E. (2000) Antioxidant Action of the Antihypertensive Drug, Carvedilol, Against Lipid Peroxidation, Biochem. Pharmacol. 59, 1069–1076.

    Article  PubMed  CAS  Google Scholar 

  29. Niki, E., Saito, T., Kawakami, A., and Kamiya, Y. (1984) Inhibition of Oxidation of Methyl Linoleate in Solution by Vitamin E and Vitamin C, J. Biol. Chem. 259, 4177–4182.

    PubMed  CAS  Google Scholar 

  30. Darley-Usmar, V.M., Hogg, N., O'Leary, V.J., Wilson, M.T., and Moncada, S. (1992) The Simultaneous Generation of Superoxide and Nitric Oxide Can Initiate Lipid Peroxidation in Human Low Density Lipoproteins, Free Rad. Res. Commun. 17, 9–20.

    CAS  Google Scholar 

  31. Suarna, C., Hood, R.L., Dean, R.T., and Stocker, R. (1993) Comparative Antioxidant Activity of Tocotrienols and Other Natural Lipid-Soluble Antioxidants in a Homogeneous System, and in Rat and Human Lipoproteins, Biochim. Biophys. Acta 1166, 163–170.

    PubMed  CAS  Google Scholar 

  32. Niki, E. (1987) Inhibition of Oxidation of Liposomal-and Biomembranes by Vitamin E, in Clinical and Nutritional Aspects of Vitamin E (Hayashi, O., and Mino, M., eds.), pp. 3–13, Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  33. Noguchi, N., Gotoh, N., and Niki, E. (1994) Effects of Ebselen and Probucol on Oxidative Modifications of Lipid and Protein of Low Density Lipoprotein Induced by Free Radicals, Biochim. Biophys. Acta 1213, 176–182.

    PubMed  CAS  Google Scholar 

  34. Raneva, V., Shimasaki, H., Ishida, Y., Ueta, N., and Niki, E. (2001) Antioxidative Activity of 3,4-Dihydroxyphenylacetic Acid and Caffeic Acid in Rat Plasma, Lipids 36, 1111–1116.

    Article  PubMed  CAS  Google Scholar 

  35. O'Bryne, D., Grundy, S., Packer, L., Devaraj, S., Baldenius, K., Hoppe, P.P., Kraemer, K., Jialal, I., and Traber, M.G. (2000) Studies of LDL Oxidation Following α-, γ-, or δ-Tocotrienyl Acetate Supplementation of Hypercholesterolemic Humans, Free Rad. Biol. Med. 29, 834–845.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Violeta Raneva.

About this article

Cite this article

Raneva, V., Shimasaki, H., Furukawa, Y. et al. Action of 1-(11-selenadodecyl)-glycerol and 1-(11-selenadodecyl)-3-trolox-glycerol against lipid peroxidation. Lipids 37, 633–640 (2002). https://doi.org/10.1007/s11745-002-0943-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-002-0943-x

Keywords

Navigation