Skip to main content
Log in

Evidence in favor of a facilitated transport system for FA uptake in cultured L6 cells

  • Articles
  • Published:
Lipids

Abstract

In this manuscript we report a study of the transport of FA in L6 muscle cells. Cultured L6 cells took up labeled FA (C10 to C20) as a linear function of time up to 15 min. Thereafter, the rate of uptake gradually declined although it persisted for at least 12 h after the addition of the substrate. Kinetic parameters (K m, V m, and k o) were determined from a fitted Michaelis-Menten-type equation modified by a term for a saturable (linear) component of the measured total uptake. V m values were different for some of the FA studied, and K m data showed significant differences between saturated and unsaturated FA. The maximal rate of uptake was observed at pH 7.40 for decanoate, palmitate, and eicosatrienoate. Uptake was significantly influenced when the pH of the incubation medium was changed. Experiments designed to study the influence of FA/albumin molar ratio indicated that V m was dependent on the total (bound and free) concentration of the FA. A concentrative uptake was demonstrated in short-term experiments with an apparent plateau of 20 and 40 μM for palmitate and eicosatrienoate, respectively. A competitive inhibition was also observed between palmitate as substrate and the other FA. From our results we can postulate that the uptake of FA in L6 cells is the sum of passive diffusion plus a saturable component and that the rate of uptake is dependent on one (or more) protein structures, although their precise characteristics and functions remain to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FABP:

fatty acid-binding protein

IMEM-Zo:

improved minimal essential medium-zinc optional

MEM:

minimal essential medium

UFA:

uncomplexed FA

References

  1. Van der Vusse, G.J., Glatz, J.F.C., Stam, H.C.G., and Reneman, R.S. (1992) Fatty Acid Homeostasis in the Normoxic and Ischemic Heart, Physiol. Rev. 72, 881–940.

    PubMed  Google Scholar 

  2. Luiken, J.J.F.P., Van Nieuwenhoven, F.A., America, G., Van der Vusse, G.J., and Glatz, J.F.C. (1997) Uptake and Metabolism of Palmitate by Isolated Cardiac Myocytes from Adult Rats: Involvement of Sarcolemmal Proteins, J. Lipid. Res. 38, 745–758.

    PubMed  CAS  Google Scholar 

  3. DeGrella, R.F., and Light, R.J. (1980) Uptake and Metabolism of Fatty Acids by Dispersed Adult Rat Heart Myocytes. I. Kinetics of Homologous Fatty Acids, J. Biol. Chem. 255, 9731–9738.

    PubMed  CAS  Google Scholar 

  4. DeGrella, R.F., and Light, R.J. (1980) Uptake and Metabolism of Fatty Acids by Dispersed Adult Rat Heart Myocytes. II. Inhibition by Albumin and Fatty Acid Homologues, and the Effect of Temperature and Metabolic Reagents, J. Biol. Chem. 255, 9739–9745.

    PubMed  CAS  Google Scholar 

  5. Rose, H., Hennecke, T., and Kammermeier, H. (1990) Sarcolemmal Fatty Acid Transfer in Isolated Cardiomyocytes Governed by Albumin/Membrane-Lipid Partition, J. Mol. Cell. Cardiol. 22, 883–892.

    Article  PubMed  CAS  Google Scholar 

  6. Hamilton, J.A., Civelek, V.N., Kamp, F., Tonhein, K., and Corkey, B.E. (1994) Changes in Internal pH Caused by Movement of Fatty Acids into and out of Clonal Pancreatic β-Cells (HIT), J. Biol. Chem., 269, 20852–20856.

    PubMed  CAS  Google Scholar 

  7. Stremmel, W. (1988) Fatty Acid Uptake by Isolated Heart Myocytes Represents a Carrier-Mediated Transport Process, J. Clin. Invest. 81, 844–852.

    PubMed  CAS  Google Scholar 

  8. Sorrentino, D., Stump, D., Potter, B.J., Robinson, R.B., White, R., Kiang, C.L., and Berk, P.D. (1988) Oleate Uptake by Cardiac Myocytes Is Carrier Mediated and Involves a 40 kD Plasma Membrane Fatty Acid Binding Protein Similar to That in Liver, Adipose Tissue, and Gut, J. Clin. Invest. 82, 928–935.

    Article  PubMed  CAS  Google Scholar 

  9. Harmon, C.M., Luce, P., Beth, A.H., and Abumrad, N.A. (1991) Labeling of Adipocyte Membranes by Sulfo-N-succinimidyl Derivatives of Long-Chain Fatty Acids: Inhibition of Fatty Acid Transport, J. Membrane Biol. 121, 261–268.

    Article  CAS  Google Scholar 

  10. Tanaka, T., and Kawamura, K. (1995) Isolation of Myocardial Membrane Long-Chain Fatty Acid-Binding Protein: Homology with a Rat Membrane Protein Implicated in the Binding or Transport of Long-Chain Fatty Acids, J. Mol. Cell. Cardiol. 27, 1613–1622.

    Article  PubMed  CAS  Google Scholar 

  11. Schaffer, J.E., and Lodish, H.F. (1994) Expression Cloning and Characterization of a Novel Adipocyte Long Chain Fatty Acid Transport Protein, Cell 79, 427–436.

    Article  PubMed  CAS  Google Scholar 

  12. Prinsen, C.F., and Veerkamp, J.H. (1998) Transfection of L6 Myoblasts with Adipocyte Fatty Acid-Binding Protein cDNA Does Not Affect Fatty Acid Uptake but Disturbs Lipid Metabolism and Fusion, Biochem. J. 329, 265–273.

    PubMed  CAS  Google Scholar 

  13. Popov, D., Hasu, M., Ghinea, N., Simionescu, N., and Simionescu, M. (1992) Cardiomyocytes Express Albumin Binding Proteins, J. Mol. Cell. Cardiol. 24, 989–1002.

    Article  PubMed  CAS  Google Scholar 

  14. Trigatti, B.L., and Gerber, G.E. (1995) A Direct Role of Serum Albumin in the Cellular Uptake of Long-Chain Fatty Acids, Biochem. J. 308, 155–159.

    PubMed  CAS  Google Scholar 

  15. Spector, A.A., Steinberg, D., and Tanaka, A. (1965) Uptake of Free Fatty Acids by Erlich Ascites Tumor Cells, J. Biol. Chem. 240, 1032–1041.

    PubMed  CAS  Google Scholar 

  16. Samuel, D., Paris, S., and Ailhaud, G. (1976) Uptake and Metabolism of Fatty Acids and Analogues by Cultured Cardiac Cells from Chick Embryo, Eur. J. Biochem. 64, 583–595.

    Article  PubMed  CAS  Google Scholar 

  17. Folch, J., Lees, M., and Sloane Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  18. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  19. Hanahan, D.J., Dittner, J.C., and Warashima, E. (1957) A Column Chromatographic Separation of Classes of Phospholipids, J. Biol. Chem. 228, 685–690.

    PubMed  CAS  Google Scholar 

  20. Marra, C.A., and de Alaniz, M.J.T. (1990) Mineralocorticoids Modify Rat Liver Δ6 Desaturase Activity and Other Parameters of Lipid Metabolism, Biochem. Int. 22, 483–493.

    PubMed  CAS  Google Scholar 

  21. Marra, C.A., and de Alaniz, M.J.T. (1999) Acyl-CoA Synthetase Activity in Liver Microsomes from Calcium-Deficient Rats, Lipids 34, 343–354.

    Article  PubMed  CAS  Google Scholar 

  22. Marra, C.A., and de Alaniz, M.J.T. (1992) Incorporation and Metabolic Conversion of Saturated and Unsaturated Fatty Acids in SK-Hep1 Human Hepatoma Cells in Culture, Mol. Cell. Biochem. 117, 107–118.

    Article  PubMed  CAS  Google Scholar 

  23. Stremmel, W., Strohmeyer, G., and Berk, P.D. (1986) Hepatocellular Uptake of Oleate Is Energy Dependent, Sodium Linked, and Inhibited by Antibody to a Hepatocyte Plasma Membrane Fatty Acid Binding Protein, Proc. Natl. Acad. Sci. USA 83, 3584–3588.

    Article  PubMed  CAS  Google Scholar 

  24. Jauregui, H.O., Hayner, N.T., Driscoll, J.L., Williams-Holland, R., Lipsky, M.H., and Galleti, P.M. (1981) Trypan Blue Dye Uptake and Lactate Dehydrogenase in Adult Rat Hepatocytes—Freshly Isolated Cells, Cell Suspensions, and Primary Monolayer Cultures, In Vitro 17, 1100–1110.

    PubMed  CAS  Google Scholar 

  25. Spector, A.A., Fletcher, J.E., and Ashbrook, J.D. (1971) Analysis of Long-Chain Free Fatty Acid Binding to Bovine Serum Albumin by Determination of Stepwise Equilibrium Constants, Biochemistry 10, 3229–3232.

    Article  PubMed  CAS  Google Scholar 

  26. Ashbrook, J.D., Spector, A.A., Santos, E.C., and Fletcher, J.E. (1975) Long Chain Fatty Acid Binding to Human Plasma Albumin, J. Biol. Chem. 250, 2333–2338.

    PubMed  CAS  Google Scholar 

  27. Spector, A.A. (1975) Fatty Acid Binding to Plasma Albumin, J. Lipid Res. 16, 165–179.

    PubMed  CAS  Google Scholar 

  28. Spector, A.A., John, K., and Fletcher, J.E. (1969) Binding of Long-Chain Fatty Acids to Bovine Serum Albumin, J. Lipid. Res. 10, 56–67.

    PubMed  CAS  Google Scholar 

  29. Ashbrook, J.D., Spector, A.A., and Fletcher, J.E. (1972) Medium Chain Fatty Acid Binding to Human Plasma Albumin, J. Biol. Chem. 247, 7038–7042.

    PubMed  CAS  Google Scholar 

  30. Stump, D.D., Fan, X., and Berk, P.D. (2001) Oleic Acid Uptake and Binding by Rat Adipocytes Define Dual Pathways for Cellular Fatty Acid Uptake, J. Lipid Res. 42, 509–520.

    PubMed  CAS  Google Scholar 

  31. Corrin, H.L., Klevens, H.B., and Harkins, W.D. (1946) The Determination of Critical Concentrations for the Formation of Soap Micelles by the Spectral Behavior of Pinacyanol Chloride, J. Chem. Phys. 14, 480–486.

    Article  CAS  Google Scholar 

  32. Klevens, H.B. (1953) Structure and Aggregation in Dilute Solutions of Surface Active Agents, J. Am. Oil Chem. Soc. 30, 74–80.

    CAS  Google Scholar 

  33. Segel, I.H. (1975) Enzyme Kinetics and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems, pp. 105–175, Wiley Interscience Publication, John Wiley & Sons, New York.

    Google Scholar 

  34. Barber, E.D., and Lands, W.E.M. (1973) Quantitative Measurement of the Effectiveness of Unsaturated Fatty Acids Required for the Growth of Saccharomyces cerevisiae, J. Bacteriol. 115, 543–551.

    PubMed  CAS  Google Scholar 

  35. Glatz, J.F.C., Luiken, J.J.F.P., Van Nieuwenhoven, F.A., and Van der Vusse, G.J. (1997) Molecular Mechanism of Cellular Uptake and Intracellular Translocation of Fatty Acids, Prostaglandins, Leukot. Essent. Fatty Acids 57, 3–9.

    Article  CAS  Google Scholar 

  36. Reed, R.G., and Burrington, C.M. (1989) The Albumin Receptor Effect May Be Due to a Surface-Induced Conformational Change in Albumin, J. Biol. Chem. 17, 9867–9872.

    Google Scholar 

  37. Luiken, J.J.F.P., Schaap, F.G., Van Nieuwenhoven, F.A., Van der Vusse, G.J., Bonen, A., and Glatz, J.F.C. (1999) Cellular Fatty Acid Transport in Heart and Skeletal Muscle as Facilitated by Proteins, Lipids 34 (Suppl.), S169-S175.

    PubMed  CAS  Google Scholar 

  38. Jefferson, J.R., Powell, D.M., Rymaszewski, Z., Kukowska-Latallo, J., Lowe, J.B., and Schroeder, F. (1990), Altered Membrane Structure in Transfected Mouse L-Cell Fibroblasts Expressing Rat Liver Fatty Acid-Binding Protein, J. Biol. Chem. 265, 11062–11068.

    PubMed  CAS  Google Scholar 

  39. Prows, D.R., Murphy, E.J., and Schroeder, F. (1995) Intestinal and Liver Fatty Acid Binding Proteins Differentially Affect Fatty Acid Uptake and Esterification in L-Cells, Lipids 30, 907–910.

    PubMed  CAS  Google Scholar 

  40. Murphy, E.J., Prows, D.R., Jefferson, J.R., and Schroeder, F. (1996) Liver Fatty Acid Binding Protein Expression in Transfected Fibroblasts Stimulates Fatty Acid Uptake and Metabolism, Biochim. Biophys. Acta 1301, 191–196.

    PubMed  Google Scholar 

  41. Prows, D.R., Murphy, E.J., Moncecchi, D., and Schroeder, F. (1996) Intestinal Fatty Acid-Binding Protein Expression Stimulates Fibroblast Fatty Acid Esterification, Chem. Phys. Lipids 84, 47–56.

    Article  PubMed  CAS  Google Scholar 

  42. Murphy, E.J. (1998) Sterol Carrier Protein-2 Expression Increases NBD-Stearate Uptake and Cytoplasmic Diffusion in L Cells, Am. J. Physiol. 275, G244-G249.

    PubMed  CAS  Google Scholar 

  43. Atshaves, B.P., Foxworth, W.B., Frolov, A., Roths, J.B., Kier, A.B., Oetama, B.K., Piedrahita, J.A., and Schroeder, F. (1998) Cellular Differentiation and I-FABP Protein Expression Modulate Fatty Acid Uptake and Diffusion, Am. J. Physiol. 274, C633-C644.

    PubMed  CAS  Google Scholar 

  44. Hotamisligil, G.S., Johnson, R.S., Distel, R.J., Ellis, R., Papaioannou, V.E., and Spiegelman, B.M. (1996) Uncoupling of Obesity from Insulin Resistence Through a Targeted Mutation in aP2, the Adipocyte Fatty Acid Binding Protein, Science 274, 1377–1379.

    Article  PubMed  CAS  Google Scholar 

  45. Murphy, E.J., Prows, D.R., Stiles, T., and Schroeder, F. (2000) Liver and Intestinal Fatty Acid-Binding Protein Expression Increases Phospholipid Content and Alters Phospholipid Fatty Acid Composition in L-Cell Fibroblasts, Lipids 35, 729–738.

    Article  PubMed  CAS  Google Scholar 

  46. Rose, H., Hennecke, T., and Kammermeier, H. (1989) Is Fatty Acid Uptake in Cardiomyocytes Determined by Physicochemical Fatty Acid Partition Between Albumin and Membranes? Mol. Cell. Biochem. 88, 31–36.

    Article  PubMed  CAS  Google Scholar 

  47. Bassingthwaighte, J.B., Noodleman, L., Van der Vusse, G., and Glatz, J.F.C. (1989) Modeling of Palmitate Transport in the Heart, Mol. Cell. Biochem. 88, 51–58.

    Article  PubMed  CAS  Google Scholar 

  48. Ricieri, G.V., and Kleinfeld, A.M. (1995) Unbound Free Fatty Acid Levels in Human Serum, J. Lipid Res. 36, 229–240.

    Google Scholar 

  49. Richieri, G.V., Anel, A., and Kleinfeld, A.M. (1993) Interactions of Long-Chain Fatty Acids and Albumin: Determination of Free Fatty Acid Levels Using the Fluorescent Probe ADI-FAB, Biochemistry 32, 7574–7580.

    Article  PubMed  CAS  Google Scholar 

  50. Sorrentino, D., Van Ness, K., Moukabary, K., and Berk, P.D. (1991) Hepatocellular 22Na+ Uptake: Effect of Oleate, Am. J. Physiol. 261, G1024-G1029.

    PubMed  CAS  Google Scholar 

  51. Vyska, K., Stremmel, W., Meyer, W., Notohamiprodjo, G., Minami, K., Meyer, H., and Körfer, R. (1994) Effects of Temperature and Sodium on Myocardial and Hepatocellular Fatty Acid Uptake, Circ. Res. 74, 1–13.

    PubMed  CAS  Google Scholar 

  52. Potter, B.J., Sorrentino, D., and Berk, P.D. (1988) Mechanisms of Cellular Uptake of Free Fatty Acids, Annu. Rev. Nutr. 9, 253–270.

    Article  Google Scholar 

  53. Hamilton, J.A. (1998) Fatty Acid Transport: Difficult or Easy? J. Lipid Res. 39, 467–481.

    PubMed  CAS  Google Scholar 

  54. Spector, R.A. (1993) The Role of Albumin Binding in Hepatic Organic Anion Transport, in Hepatic Transport and Bile Secretion: Physiology and Pathophysiology (Tavoloni, N., and Berk, P.D., eds.), pp. 171–196, Raven Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Marra.

About this article

Cite this article

Marra, C.A., Girón, M.D. & Suáre, M.D. Evidence in favor of a facilitated transport system for FA uptake in cultured L6 cells. Lipids 37, 273–283 (2002). https://doi.org/10.1007/s11745-002-0891-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-002-0891-5

Keywords

Navigation