Skip to main content
Log in

Dietary n−3 FA modulate long and very long chain FA content, rhodopsin content, and rhodopsin phosphorylation in rat rod outer segment after light exposure

  • Articles
  • Published:
Lipids

Abstract

A previous study has shown that the long and very long chain FA (VLCFA) content of the rat retina responds to changes in dietary n−6/n−3 ratio of the fat fed (1). The present study tested whether similar changes in these FA are associated with alterations in rhodopsin content and rhodopsin phosphorylation after light treatment. Weanling rats were fed diets containing 20% (w/w, 40% energy) fat with either high (4.8%, w/w) or low (1.2%, w/w) n−3 FA. After 6 wk of feeding, half of the animals in each group were exposed to light for 48 h at 350 lx or were kept in complete darkness. In the rod outer segment, the high n−3 diet treatment increased the level of 20∶5n−3 and 22∶6n−3 and reduced the levels of 20∶4n−6 and 24∶4n−6 in PC, PE, and PS. After the feeding of a high n−3 FA diet, total n−3 pentaenoic VLCFA from C24 to C34 increased in PC, whereas the n−6 tetra- and pentaenoic VLCFA decreased. No changes occurred in n−3 hexaenoic VLCFA regardless of the level of 22∶6n−3 in the diet. After light exposure, animals fed a high n−3 FA diet showed reduction in 22∶6n−3 as well as in n−6 and n−3 VLCFA in PC. FFA and TG fractions contained increased levels of both 20∶4n−6 and 22∶6n−3 after light exposure. Dark-adapted rhodopsin content and rhodopsin phosphorylation in the rod outer segment of rats fed the low n−3 FA diet were higher than in animals fed a high n−3 FA diet. After light exposure, animals fed the low n−3 FA diet lost more rhodopsin compared to animals fed the high n−3 FA diet, resulting in less phosphorylation of rhodopsin. Results indicate that the FA composition, rhodopsin content, and phosphorylation in visual cells is influenced by the dietary n−3 FA fed as well as by light exposure. The results also imply that 22∶6n−3 may not be the precursor for synthesis of hexaenoic VLCFA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LCFA:

long chain fatty acids

ROS:

rod outer segment

VLCFA:

very long chain fatty acids

References

  1. Suh, M., Wierzbicki, A.A., and Clandinin, M.T. (1994) Dietary Fat Alters Membrane Composition in Rod Outer Segments in Normal and Diabetic Rats: Impact on Content of Very-Long-Chain (C≥24) Polyenoic Fatty Acids, Biochim. Biophys. Acta 1214, 54–62.

    PubMed  CAS  Google Scholar 

  2. Suh, M., Wierzbicki, A.A., Lien, E., and Clandinin, M.T. (2000) Dietary 20∶4n−6 and 22∶6n−3 Modulates the Profile of Long- and Very-Long-Chain Fatty Acids (C24−C36), Rhodopsin Content and Kinetics in Developing Photoreceptor Cells, Pediatr. Res. 48, 524–530.

    PubMed  CAS  Google Scholar 

  3. Aveldano, M.I. (1987) A Novel Group of Very Long Chain Polyenoic Fatty Acids in Dipolyunsaturated Phosphatidylcholines from Vertebrate Retina, J. Biol. Chem. 262, 1172–1179.

    PubMed  CAS  Google Scholar 

  4. Aveldano, M.I. (1988) Phospholipid Species Containing Long and Very Long Polyenoic Fatty Acids Remain with Rhodopsin After Hexane Extraction of Photoreceptor Membranes, Biochemistry 27, 1229–1239.

    Article  PubMed  CAS  Google Scholar 

  5. Anderson, G.J., Connor, W.E., and Corliss, J.D. (1990) Docosahexaenoic Acid Is the Preferred Dietary Omega-3 Fatty Acid for the Development of the Brain and Retina, Pediatr. Res. 27, 81–87.

    Google Scholar 

  6. Neuringer, M., Connor, W.E., Lin, P.S., Barstad, L., and Luck, S. (1986) n−3 Fatty Acids in the Brain and Retina: Evidence for Their Essentiality, Proc. Natl. Acad. Sci. USA 3, 4021–4025.

    Article  Google Scholar 

  7. Lin, D.S., Anderson, G.J., Connor, W.E., and Neuringer, M. (1994) Effect of Dietary n−3 Fatty Acids upon the Phospholipid Molecular Species of the Monkey Retina, Invest. Ophthalmol. Vis. Sci. 35, 794–803.

    PubMed  CAS  Google Scholar 

  8. Connor, W.E., Neuringer, M., and Lin, D.S. (1990) Dietary Effects on Brain Fatty Acid Composition: The Reversibility of n−3 Fatty Acid Deficiency Turnover of Docosahexaenoic Acid in the Brain Erythrocytes and Plasma of Rhesus Monkeys, J. Lipid Res. 31, 237–247.

    PubMed  CAS  Google Scholar 

  9. Philbrick, D.J., Mahadevappa, V.G., Ackman, R.G., and Holub, B.J. (1987) Ingestion of Fish Oil or a Derived n−3 Fatty Acid Concentrate Containing Eicosapentaenoic Acid (EPA) Affects Fatty Acid Compositions of Individual Phospholipids of Rat Brain, Sciatic Nerve, and Retina, J. Nutr. 117, 1663–1670.

    PubMed  CAS  Google Scholar 

  10. Hargreaves, K.M., and Clandinin, M.T. (1987) Dietary Control of Diacylphosphatidylethanolamine Species in Brain, Biochim. Biophys. Acta 962, 98–104.

    Google Scholar 

  11. Hargreaves, K.M., and Clandinin, M.T. (1987) Phosphocholine-transferase Activity in Plasma Membrane: Effect of Diet, Biochem. Biophys. Res. Commun. 145, 309–315.

    Article  PubMed  CAS  Google Scholar 

  12. Pawlosky, R.J., Denkins, Y., Ward, G., and Salem, N., Jr. (1997) Retinal and Brain Accretion of Long-Chain Polyunsaturated Fatty Acids in Developing Felines: The Effect of Corn Oil Based Maternal Diets, Am. J. Clin. Nutr. 65, 465–472.

    PubMed  CAS  Google Scholar 

  13. Weisinger, H.S., Vingrys, A.J., and Sinclair, A.J. (1996) The Effect of Docosahexaenoic Acid on the Electroretinogram of the Guinea Pig, Lipids 31, 65–70.

    Article  PubMed  CAS  Google Scholar 

  14. Weisinger, H.S., Vingrys, A.J., and Sinclair, A.J. (1996) Effect of Dietary n−3 Deficiency on the Electroretinogram of the Guinea Pig, Ann. Nutr. Metab. 40, 91–98.

    Article  PubMed  CAS  Google Scholar 

  15. Bush, R.A., Malnoe, A., Reme, C.E., and Williams, T.P. (1994) Dietary Deficiency of n−3 Fatty Acids Alters Rhodopsin Content and Function in the Rat Retina, Invest. Ophthalmol. Vis. Sci. 35, 91–100.

    PubMed  CAS  Google Scholar 

  16. Zorn, M., and Futterman, S. (1971) Properties of Rhodopsin Dependent on Associated Phospholipid, J. Biol. Chem. 246, 881–886.

    PubMed  CAS  Google Scholar 

  17. Schremser, J.L., and Williams, T. (1995) Rod Outer Segment (ROS) Renewal as a Mechanism for Adaptation to a New Intensity Environment. I. Rhodopsin Levels and ROS Length, Exp. Eye Res. 61, 17–24.

    Article  PubMed  CAS  Google Scholar 

  18. Schremser, J.L., and Williams, T. (1995) Rod Outer Segment (ROS) Renewal as a Mechanism for Adaptation to a New Intensity Evironment. II. Rhodopsin Synthesis and Packing Density, Exp. Eye Res. 61, 25–32.

    Article  PubMed  CAS  Google Scholar 

  19. Organisciak, D.T., Darrow, R.M., Jiang, Y.L., and Blanks, J.C. (1996) Retinal Light Damage in Rats with Altered Levels of Rod Outer Segment Docosahexaenoate, Invest. Ophthalmol. Vis. Sci. 37, 2243–2257.

    PubMed  CAS  Google Scholar 

  20. Penn, J.S., and Williams, T.P. (1986) Photostasis: Regulation of Daily Photon-Catch by Rat Retinas in Response to Various Cyclic Illuminances, Exp. Eye Res. 43, 915–928.

    Article  PubMed  CAS  Google Scholar 

  21. Wiegand, R.D., Joel, C.D., Rapp, L.M., Nielson, J.C., Maude, M.B., and Anderson, R.E. (1986) Polyunsaturated Fatty Acids and Vitamin E in Rat Rod Outer Segments During Light Damage, Invest. Ophthalmol. Vis. Sci. 27, 727–733.

    PubMed  CAS  Google Scholar 

  22. Penn, J.S., and Anderson, R.E. (1987) Effect of Light History on Outer-Segment Membrane Composition in the Rat, Exp. Eye Res. 44, 767–778.

    Article  PubMed  CAS  Google Scholar 

  23. Wiegand, R.D., Koutz, C.A., Chen, H., and Anderson, R.E. (1995) Effect of Dietary Fat and Environmental Lighting on the Phospholipid Molecular Species of Rat Photoreceptor Membranes, Exp. Eye Res. 60, 291–306.

    Article  PubMed  CAS  Google Scholar 

  24. Clandinin, M.T., and Yamashiro, S. (1980) Dietary Factors Affecting the Incidence of Dietary Fat Induced Myocardial Lesions, J. Nutr. 110, 1197–1203.

    PubMed  CAS  Google Scholar 

  25. Stinson, A.M., Wiegand, R.D., and Anderson, R.E. (1991) Metabolism of Lipid Molecular Species in Rat Rod Outer Segments, Exp. Eye Res. 52, 213–218.

    Article  PubMed  CAS  Google Scholar 

  26. Folch, J., Lees, M., and Sloane Stanley, G.H. (1957) A Simple Method for Isolation and Purification of Total Lipides from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  27. Morrison, W.R., and Smith, L.M. (1964) Preparation of Fatty Acid Methyl Esters and Dimethylacetals from Lipids with Boron Fluoride-Methanol, J. Lipid Res. 5, 600–608.

    PubMed  CAS  Google Scholar 

  28. Fulton, A.B., Manning, K.A., Baker, B.N., Schukar, S.E., and Bailey, C.J. (1982) Dark-Adapted Sensitivity, Rhodopsin Content, and Background Adaptation in Pcd/Pcd Mice, Invest. Ophthalmol. Vis. Sci. 22, 386–393.

    PubMed  CAS  Google Scholar 

  29. Stubbs, G.W., Smith, H.G., and Litman, B.J. (1976) Alkyl Glucosides as Effective Solubilizing Agents for Bovine Rhodopsin—A Comparison with Several Commonly Used Detergents, Biochim. Biophys. Acta 425, 46–56.

    Google Scholar 

  30. Hubbard, R., Brown, P.K., and Bownds, D. (1971) Methodology of Vitamins A and Retinal Pigments, Methods Enzymol. 18, 615–653.

    Article  CAS  Google Scholar 

  31. Kuhn, H., and Wilden, U. (1982) Light Regulated Binding of Rhodopsin Kinase and Other Proteins to Cattle Photoreceptor Membranes, Methods Enzymol. 81, 489–496.

    PubMed  CAS  Google Scholar 

  32. Laemmli, U.K. (1970) Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4, Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  33. Steel, R.G.D., and Torrie, J.H. (1990) Principles and Procedures of Statistics, 2nd edn., Chapters 8–9, McGraw-Hill, New York.

    Google Scholar 

  34. Connor, W.E., Neuringer, M., and Reisbick, S. (1991) Essentiality of Omega-3 Fatty Acids: Evidence from the Primate Model and Implications for Human Nutrition, in Health Effects of ω3 Polyunsaturated Fatty Acids in Seafoods (Simopoulos, A.P., Kifer, R.R., Martin, R.E., and Barlow, S.M., eds.), Vol. 66, pp. 118–132, Karger Press, Basel.

    Google Scholar 

  35. Neuringer, M., and Connor, W.E. (1986) n−3 Fatty Acids in the Brain and Retina: Evidence of Their Essentiality, Nutr. Rev. 44, 285–294.

    Article  PubMed  CAS  Google Scholar 

  36. Miljanich, G.P., Nemes, P.P., White, D.L., and Dratz, E.A. (1981) The Asymmetric Transmembrane Distribution of Phosphatidylethanolamine, Phosphatidylserine and Fatty Acids of the Bovine Retinal Rod Outer Segment Disk Membrane, J. Membr. Biol. 60, 249–255.

    Article  PubMed  CAS  Google Scholar 

  37. Aveldano, M.I. (1989) Dipolyunsaturated Species of Retina Phospholipids and Their Fatty Acids, in Biomembranes and Nutrition: Nutrients Affecting Lipid Composition Properties of Cell Membranes (Leger, C.L., and Bereziat, G., eds.), Vol. 195, pp. 87–96, INSERM, Paris.

    Google Scholar 

  38. Aveldano, M.I., and Bazan, N.G. (1983) Molecular Species of Phosphatidylcholine,-ethanolamine,-serine, and-inositol in Microsomal and Photoreceptor Membranes of Bovine Retina, J. Lipid Res. 24, 620–627.

    PubMed  CAS  Google Scholar 

  39. Wiegand, R.D., and Anderson, R.E. (1983) Phospholipid Molecular Species of Frog Rod Outer Segment Membranes, Exp. Eye Res. 37, 159–173.

    Article  PubMed  CAS  Google Scholar 

  40. Aveldano, M.I., and Sprecher, H. (1987) Very Long Chain (C24 to C36) Polyenoic Fatty Acids of the n−3 and n−6 Series in Dipolyunsaturated Phosphatidylcholines from Bovine Retina, J. Biol. Chem. 262, 1180–1186.

    PubMed  CAS  Google Scholar 

  41. Hardy, S.J., Ferrante, A., Poulos, A., Robinson, B.S., Johnson, D.W., and Murray, A.W. (1994) Effect of Exogenous Fatty Acids with Greater Than 22 Carbon Atoms (Very Long Chain Fatty Acids) on Superoxide Production by Human Neutrophils, J. Immunol. 153, 1754–1761.

    PubMed  CAS  Google Scholar 

  42. Hardy, S.J., Robinson, B.S., Ferrante, A., Hii, C.S.T., Johnson, D.W., Poulos, A., and Murray, A.W. (1995) Polyenoic Very-Long-Chain Fatty Acids Mobilize Intracellular Calcium from a Thapsigargin-Insensitive Pool in Human Neutrophils: The Relationship Between Ca2+ Mobilization and Superoxide Production Induced by Long- and Very-Long-Chain Fatty Acids, Biochem. J. 311, 689–697.

    PubMed  CAS  Google Scholar 

  43. Jung, H., and Reme, C. (1994) Light-Evoked Arachidonic Acid Release in the Retina: Illuminance/Duration Dependence and the Effects of Quinacrine, Mellitin and Lithium, Graefe’s Arch. Clin. Exp. Ophthalmol. 232, 167–175.

    CAS  Google Scholar 

  44. Reinboth, J.J., Gautschi, K., Clausen, M., and Reme, C.E. (1996) Light Elicits the Release of Docosahexaenoic Acid from Membrane Phospholipids in the Rat Retina in vitro, Exp. Eye Res. 63, 277–284.

    Article  PubMed  CAS  Google Scholar 

  45. Birkle, D.L., and Bazan, N.G. (1989) Light Exposure Stimulates Arachidonic Acid Metabolism in Intact Rat Retina and Isolated Rod Outer Segments, Neurochem. Res. 14, 185–190.

    Article  PubMed  CAS  Google Scholar 

  46. Penn, J.S., and Anderson, R.E. (1987) Effect of Light History on Retinal Antioxidants and Light Damage Susceptibility in the Rat, Exp. Eye Res. 44, 767–778.

    Article  PubMed  CAS  Google Scholar 

  47. Penn, J.S., and Thum, L. (1987) A Comparison of the Retinal Effects of Light Damage and High Illuminance Light History, in Degenerative Retinal Disorders: Clinical and Laboratory Investigations (Hollyfield, J.G., Anderson, R.E., and LaVail, M.M., eds.), Progress in Clinical and Biological Research Series, Vol. 247, pp. 425–438, Alan R. Liss, New York.

    Google Scholar 

  48. Penn, J.S., Thum, L., and Naash, M.I. (1989) Photoreceptor Physiology in the Rat Is Governed by the Light Environment, Exp. Eye Res. 49, 205–215.

    Article  PubMed  CAS  Google Scholar 

  49. Poulos, A., Sharp, P., Johnson, D., and Easton, C. (1988) The Occurrence of Polyenoic Very Long Chain Fatty Acids with Greater Than 32 Carbon Atoms in Molecular Species of Phosphatidylcholine in Normal and Peroxisome Deficient (Zellweger’s syndrome) Brain, Biochem. J. 253, 645–650.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Thomas Clandinin.

About this article

Cite this article

Suh, M., Wierzbicki, A.A. & Clandinin, M.T. Dietary n−3 FA modulate long and very long chain FA content, rhodopsin content, and rhodopsin phosphorylation in rat rod outer segment after light exposure. Lipids 37, 253–260 (2002). https://doi.org/10.1007/s11745-002-0888-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-002-0888-0

Keywords

Navigation