Skip to main content
Log in

Postprandial and short-term effects of dietary virgin olive oil on oxidant/antioxidant status

  • Articles
  • Published:
Lipids

Abstract

It is generally believed that virgin olive oil consumption has beneficial effects, but little is known about its effects postprandially on oxidant/antioxidant status. The aim of this study was to determine changes in oxidative stress biomarkers and lipid profile after a single dose of virgin olive oil and after 1 wk of daily consumption. Sixteen subjects (9 men, 7 women) ingested 50 mL of virgin olive oil in a single dose. Blood samples were collected from 0 to 24 h. Thereafter, 14 participants (8 men, 6 women) followed a 1-wk 25 mg/d virgin olive oil dietary intervention. Blood samples were collected at the end of this period. Serum TAG (P=0.016), plasma FA (P<0.001) and lipid peroxidation products in plasma (P<0.001) and VLDL (P=0.007) increased, reaching a peak at 4–6 h, and returning to baseline values at 24 h after oil ingestion. The opposite changes were observed in plasma glutathione peroxidase (P=0.001) and glutathione reductase (GR) (P=0.042). No changes in LDL lipid peroxidation or resistance to oxidation were observed postprandially. At 24 h, plasma oleic acid remained increased (P<0.05) and resistance of LDL to oxidation improved (P<0.05). After 1 wk of virgin olive oil consumption, plasma oleic acid (P=0.031), resistance of LDL to oxidation (P<0.05), and plasma GR activity (P=0.005) increased. These results indicate that changes in oxidant/antioxidant status occur after oral virgin olive oil. Virgin olive oil consumption could provide short-term benefits for LDL resistance to oxidation and in glutathione-related enzyme activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Apo:

apolipoprotein

CHD:

coronary heart disease

GR:

glutathione reductase

GSH-Px:

glutathione peroxidase

MUFA:

monounsaturated FA

OR:

oxidation rate

SFA:

saturated FA

References

  1. Pérz, G., Pena, A., Sala, J., Roset, P., Masiá, R., and Marrugat, J. (1998) Acute Myocardial Infarction Case Fatality, Incidence and Mortality Rates in a Population Registry in Gerona, Spain, 1990–1992, Int. J. Epidemiol. 27, 599–604.

    Article  Google Scholar 

  2. De Lorgeril, M., Salen, P., Martin, J.L., Monjaud, I., Delaye, J., and Mamelle, N. (1999) Mediterranean Diet, Traditional Risk Factors, and the Rate of Cardiovascular Complications After Myocardial Infarction. Final Report of the Lyon Diet Heart Study, Circulation 99, 779–785.

    PubMed  Google Scholar 

  3. Visioli, F. (2000) Antioxidants in Mediterranean Diets, in Mediterranean Diets (Simopoulos, A.P., and Visioli, F., eds.), Vol. 87, pp. 43–45, World Review of Nutrition and Dietatics Series, S. Karger, Basel, Switzerland.

    Chapter  Google Scholar 

  4. Reaven, P.D., and Witzum, J.L. (1996) Oxidized Low Density Lipoproteins in Atherogenesis: Role of Dietary Modification, Ann. Rev. Nutr. 16, 51–71.

    Article  CAS  Google Scholar 

  5. Witzum, J.L. (1994) The Oxidation Hypothesis of Atherosclerosis, Lancet 344, 793–795.

    Article  Google Scholar 

  6. Cohn, S. (1998) Postprandial Lipemia: Emerging Evidence for Atherogenicity of Remnant Lipoproteins, Can. J. Cardiol. 14 (Suppl. B), 18B-27B.

    PubMed  CAS  Google Scholar 

  7. Sattar, N., Petrie, J.R., and Jaap, A.J. (1998) The Atherogenic Lipoprotein Phenotype and Vascular Endothelial Dysfunction, Atherosclerosis 138, 229–235.

    Article  PubMed  CAS  Google Scholar 

  8. Staprans, I., Rapp, J.H., Pan, X.M., Kim, K.Y., and Feingold, K.R. (1994) Oxidized Lipids in the Diet Are a Source of Oxidized Lipid in Chylomicrons of Human Serum, Arterioscler. Thromb. 14, 1900–1905.

    PubMed  CAS  Google Scholar 

  9. Sutherland, W.H., Walker, R.J., de Jong, S.A., van Rij, A.M., Phillips, V., and Walker, H.L. (1999) Reduced Postprandial Serum Paraoxonase Activity After a Meal Rich in Used Cooking Fat, Arterioscler. Thromb. Vasc. Biol. 19, 1340–1347.

    PubMed  CAS  Google Scholar 

  10. Reaven, P., Parthasarathy, S., Grasse, B.J., Miller, E., Almazan, F., Mattson, F.H., Khoo, J.C., Steinberg, D., and Witzum, J.L. (1991) Feasibility of Using an Oleate-Rich Diet to Reduce the Susceptibility of Low-Density Lipoprotein to Oxidative Modification in Humans, Am. J. Clin. Nutr. 54, 701–706.

    PubMed  CAS  Google Scholar 

  11. Berry, E.M., Eisenberg, S., Friedlander, Y., Harats, D., Kaufmann, N.A., Norman, Y., and Stein, Y. (1992) Effects of Diets rich in Monounsaturated Fatty Acids on Plasma Lipoproteins: The Jerusalem Nutrition Study: Monounsaturated Fatty Acids vs. Carbohydrates, Am. J. Clin. Nutr. 56, 394–403.

    PubMed  CAS  Google Scholar 

  12. Mata, P., Varela, O., Alonso, R., Lahoz, C., de Oya, M., and Badimon, L. (1997) Monounsaturated and Polyunsaturated n−6 Fatty Acid-Enriched Diets Modify LDL Oxidation and Decrease Human Coronary Smooth Muscle Cell DNA Synthesis, Arterioscler. Thromb. Vasc. Biol. 17, 2088–2095.

    PubMed  CAS  Google Scholar 

  13. Reaven, P.D., Grasse, B.J., and Tribble, D.L. (1994) Effect of Linoleate-Enriched and Oleate-Enriched Diets in Combination with Alpha-Tocopherol on the Susceptibility of LDL and LDL Subfractions to Oxidative Modifications in Humans, Arterioscler. Thromb. 14, 557–566.

    PubMed  CAS  Google Scholar 

  14. Thomsen, C., Rasmussen, O., Lousen, T., Holst, J.J., Fenselau, S., Schrezenmeir, J., and Hermansen, K. (1999) Differential Effects of Saturated and Monounsaturated Fatty Acids on Postprandial Lipemia and Increatin Responses in Healthy Subjects, Am. J. Clin. Nutr. 69, 1135–1143.

    PubMed  CAS  Google Scholar 

  15. Roche, H.M., Zampelas, A., Jackson, K.G., Williams, C.M., and Gibney, M.J. (1998) The Effect of Test Meal Monounsaturated Fatty Acid: Saturated Fatty Acid Ratio on Postprandial Lipid Metabolism, Brit. J. Nutr. 79, 419–424.

    Article  PubMed  CAS  Google Scholar 

  16. Higashi, K., Ishikawa, T., Tomiyasu, K., Yoshida, H., Ito, T., Nakajima, K., Yonemura, A., Sawada, S., and Nakamura, H. (1997) Olive Oil Increases the Magnitude of Postprandial Chylomicron Remnants Compared to Milk Fat and Safflower Oil, J. Am. Coll. Nutr. 16, 429–434

    PubMed  CAS  Google Scholar 

  17. López, M.C., Satué, T., González, M., and Agramount, A. (1994) Fatty Acid Composition of Trout Oil, Food Chem. 50, 363–365.

    Article  Google Scholar 

  18. Gimeno, E., Calero, E., Castellote, A.I., Lamuela, R., de la Torre, M.C., and López-Sabater, M.C. (2000) Simultaneous Determination of Alpha-Tocopherol and Beta-Carotene in Olive Oil by Reversed-Phase High-Performance Liquid Chromatography, J. Chromatogr. A 881, 251–254.

    Article  PubMed  CAS  Google Scholar 

  19. Singleton, V.L., and Ross, J.A. (1965) Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagent, Am. J. Enol. Vitic. 16, 144–158.

    CAS  Google Scholar 

  20. European Union Commission (1999) Commission Regulation (ECC) no 2568/91 of 11 July 1991 on the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis, Official Journal of the European Community L248, 05/09/91, 0001–0082.

    Google Scholar 

  21. Paglia, D.E., and Valentine, W.N. (1967) Studies on the Quantitative and Qualitative Characterization of Erythrocyte Glutathione Peroxidase, J. Lab. Clin. Med. 70, 158–169.

    PubMed  CAS  Google Scholar 

  22. Goldberg, D.M., and Spooner, R.J. (1983) Glutathione Reductase, in Methods of Enzymology (Bergmeyer, H.U., ed.), Vol. 3, pp. 258–265, Verlag Chemie, Basel, Switzerland.

    Google Scholar 

  23. Ródriguez-Palmero, M., López-Sabater, M.C., Castellote-Bargallo, A.I., de la Torre-Boronat, M.C., and Rivero-Urgell, M. (1998) Comparison of Two Methods for the Determination of Fatty Acid Profiles in Plasma and Erythrocytes, J. Chromatogr. A 793, 419–426.

    Article  Google Scholar 

  24. Havel, R.J., Eder, H.A., and Bragdon, J.H. (1955) The Distribution and Chemical Composition of Ultracentrifugally Separated Lipoproteins in Human Serum, J. Clin. Invest. 34, 1345–1349.

    PubMed  CAS  Google Scholar 

  25. Fitó, M., Covas, M.I., Lamuela-Raventós, R.M., Vila, J.S., Torrents, J., de la Torre, C., and Marrugat, J. (2000) Protective Effect of Olive Oil and Its Phenolic Compounds Against Low Density Lipoprotein Oxidation, Lipids 35, 633–638.

    Article  PubMed  Google Scholar 

  26. Hoving, E.B., Laing, C., Rutgers, H.M., Teggeler, M., van Doormal, J.J., and Muskiet, F.A. (1992) Optimized Deterination of Malondialdehyde in Plasa Lipid Extracts Using 1,3-Diethyl-2-thiobarbituric Acid: Influence of Detection Method and Relations with Lipids and Fatty Acids in Plasma from Healthy Adults, Clin. Chim. Acta 208, 63–76.

    Article  PubMed  CAS  Google Scholar 

  27. Gutteridge, J.M.C. (1995) Lipid Peroxidation and Antioxidants as Biomarkers of Tissue Damage, Clin. Chem. 41, 1819–1828.

    PubMed  CAS  Google Scholar 

  28. Ursini, F., Malorino, M., Brigellus-Flohe, R., Aumann, K.D., Roveri, A., Schomburg, D., and Flohe, L. (1995) The Diversity of Glutathione Peroxidases, Methods Enzymol. 252, 38–53.

    PubMed  CAS  Google Scholar 

  29. Ruíz, C., Alegría, A., Barbera, R., Farre, R., and Lagarda, M.J. (1999) Lipid Peroxidation and Antioxidant Enzyme Activities in Patients with Type 1 Diabetes Mellitus, Scand. J. Clin. Lab. Invest. 59, 99–105.

    Article  PubMed  Google Scholar 

  30. Efe, H., Deger, O., Kirci, D., Karahan, S.C., Orem, A., and Calapoglu, M. (1999) Decreased Neutrophil Antioxidative Enzyme Activities and Increased Lipid Peroxidation in Hyperlipoproteinemic Human Subjects, Clin. Chim. Acta. 279, 155–165.

    Article  PubMed  CAS  Google Scholar 

  31. Ceriello, A. (2000) Oxidative Stress and Glycemic Regulation, Metabolism 49, 27–29.

    PubMed  CAS  Google Scholar 

  32. Ceriello, A., Bortolotti, N., Motz, E., Pieri, C., Marra, M., Tonutti, L., Lizzio, S., Felett, F., Catone, B., and Taboga, C. (1999) Meal-Induced Oxidative Stress and Low-Density Lipoprotein Oxidation in Diabetes: The Possible Role of Hyperglycemia, Metabolism 48, 1503–1508.

    Article  PubMed  CAS  Google Scholar 

  33. Evans, M., Anderson, R.A., Graham, J.B., Ellis, G.R., Morris, K., Davies, S., Jackson, S.K., Lewis, M.J., Frenneaux, M.P., and Rees, A. (2000) Ciprofibrate Therapy Improves Endothelial Function and Reduces Postprandial Lipemia and Oxidative Stress in Type 2 Diabetes Mellitus, Circulation 101, 1773–1779.

    PubMed  CAS  Google Scholar 

  34. Doi, H., Kugiyama, K., Oka, H., Sugiyama, S., Ogata, N., Koide, S.I., Nakamura, S.I., and Yasue, H. (2000) Remnant Lipoproteins Induce Proatherothrombotic Molecules in Endothelial Cells Through a Redox-Sensitive Mechanism, Circulation 102, 670–676.

    PubMed  CAS  Google Scholar 

  35. Abia, R., Perona, J.S., Pacheco, Y.M., Montero, E., Muriana, F.J., and Ruiz-Gutierrez, V. (1999) Postprandial Triacylglycerols from Dietary Virgin Olive Oil Are Selectively Cleared in Humans, J. Nutr. 129, 2184–2191.

    PubMed  CAS  Google Scholar 

  36. Mabile, L., Salvayre, R., Bonnafe, M.J., and Negre-Salvayre, A. (1995) Oxidizability and Subsequent Cytotoxicity of Chylomicrons to Monocytic V937 and Endothelial Cells Are Dependent on Dietary Fat Composition, Free Radic. Biol. Med. 19, 599–607.

    Article  PubMed  CAS  Google Scholar 

  37. Lechleitner, M., Hoppichler, F., Foger, B., and Patsch, J.R. (1994) Low-Density Lipoproteins of the Postprandial State Induce Cellular Cholesteryl Ester Accumulation in Macrophages, Arterioscler. Thromb. 14, 1799–1807.

    PubMed  CAS  Google Scholar 

  38. Diwadkar, V.A., Anderson, J.W., Bridges, S.R., Gowri, M.S., and Oelgten, P.R. (1999) Postprandial Low-Density Lipoproteins in Type 2 Diabetes Are Oxidized More Extensively Than Fasting Diabetes and Control Samples, Proc. Soc. Exp. Biol. Med. 222, 178–184.

    Article  PubMed  CAS  Google Scholar 

  39. Moore, K., and Roberts, L.J. (1998) Measurement of Lipid Peroxidation, Free Rad. Res., 28, 659–671.

    Article  CAS  Google Scholar 

  40. Nicolaïew, N., Lemort, N., Adorni, L., Berra, B., Montorfano, G., Rapelli, S., Cortesi, N., and Jacotot, B. (1998) Comparison Between Extra Virgin Olive Oil and Oleic Acid Rich Sunflower Oil: Effects on Postprandial Lipemia and LDL Susceptibility to Oxidation, Ann. Nutr. Metab. 42, 251–260.

    Article  PubMed  Google Scholar 

  41. Caruso, D., Berra, B., Giavarini, F., Cortesi, N., Fedeli, E., and Galli, G. (1999) Effect of Virgin Olive Oil Phenolic Compounds on in vitro Oxidation of Human Low Density Lipoproteins, Nutr. Metab. Cardiovasc. Dis. 9, 102–107.

    PubMed  CAS  Google Scholar 

  42. Miró-Casas, E., Farré Alvadalejo, M., Covas, M.I., Ortuño Rodríguez, J., Menoyo Colomer, E., Lamuela Raventós, R.M., and de la Torre, R. (2001) Capillary Gas Chromatography-Mass Spectrometry Quantitative Determination of Hydroxytyrosol and Tyrosol in Human Urine, Anal. Biochem. 294, 63–72.

    Article  PubMed  CAS  Google Scholar 

  43. Bonanome, A., Pagnan, A., Caruso, D., Toia, A., Xamin, A., Fedeli, E., Berra, B., Zamburlini, A., Ursini, F., and Galli, G. (2000) Evidence of Postprandial Absorption of Olive Oil Phenols in Humans, Nutr. Metab. Cardiovasc. Dis. 10, 111–120.

    PubMed  CAS  Google Scholar 

  44. Lee, C., Barnett, J., and Reaven, P.D. (1998) Liposomes Enriched in Oleic Acid Are Less Susceptible to Oxidation and Have Less Proinflammatory Activity When Exposed to Oxidizing Conditions, J. Lipid Res. 39, 1239–1247.

    PubMed  CAS  Google Scholar 

  45. De la Cruz, J.P., Quintero, L., Villalobos, M.A., and Sanchez de la Cuesta, F. (2000) Lipid Peroxidation and Glutathione System in Hyperlipemic Rabbits Influence of Olive Oil Administration, Biochim. Biophys. Acta 1485, 36–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María-Isabel Covas.

About this article

Cite this article

Fitó, M., Gimeno, E., Covas, MI. et al. Postprandial and short-term effects of dietary virgin olive oil on oxidant/antioxidant status. Lipids 37, 245–251 (2002). https://doi.org/10.1007/s11745-002-0887-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-002-0887-1

Keywords

Navigation