Skip to main content
Log in

Exercise training-induced changes in sensitivity to endothelin-1 and aortic and cerebellum lipid profile in rats

  • Articles
  • Published:
Lipids

Abstract

The purpose of this work was to study whether exercise training induces changes in the lipid profile of rat aorta and nervous system and in the in vitro intrinsic responsiveness of these tissues to endothelin-1 (ET-1) treatment. The exercise program performed successfully produced the characteristic metabolic alterations of the trained state. Exercise training induced a large and significant increase in the levels of both aortic ethanolamine plasmalogens (PlasEtn) and glucosylceramides. In contrast, a decrease of aortic ceramide and cholesterol levels was evoked by exercise training. ET-1 increased PlasEtn content only in sedentary animals. An exercise-induced increase in cerebellum levels of ceramides and ceramide monohexosides was found. The cerebellum ceramide content was increased by FT-1 more noticeably in sedentary rats than in trained animals. In contrast, cerebral cortex was observed to be largely insensitive to both exercise training and ET-1 treatment. It was concluded that exercise training (i) induces changes in both vascular and cerebellar lipid profiles, the former being much more pronounced than the latter, and (ii) diminishes the aortic and cerebellar sensitivity to ET-1 action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSS:

balanced salt solution

CH:

cholesterol

DAG:

diacylglycerol

ET-1:

endothelin-1

PlasEtn:

ethanolamine plasmalogens

PtdEtn:

phosphatidylethanolamine

PL:

phospholipids

SPH:

sphingomyelin

SPHase:

sphingomyelinase

TL:

total lipids

TLC:

thin-layer chromatography

References

  1. Huwiler, A., Kolter, T., Pfeilschifter, J., and Sandhoff, K. (2000) Physiology and Pathophysiology of Sphingolipid Metabolism and Signalling, Biochim. Biophys. Acta 1485, 63–69.

    PubMed  CAS  Google Scholar 

  2. Ariga, T., Jarvis, W.D., and Yu, R.K. (1998) Role of Sphingolipid-Mediated Cell Death in Neurodegenerative Diseases, J. Lipid Res. 39, 1–16.

    PubMed  CAS  Google Scholar 

  3. Johns, D.G., Charpie, J.R., and Webb, C. (1998) Is Ceramide Signaling a Target for Vascular Therapeutic Intervention? Curr. Pharm. Des. 4, 481–488.

    PubMed  CAS  Google Scholar 

  4. Latorre, E., Aragonés, M.D., Fernández, I., and Catalán, R.E. (1999) Platelet-Activating Factor Modulates Brain Sphingomyelin Metabolism, Eur. J. Biochem. 261, 1–9.

    Article  Google Scholar 

  5. Catalán, R.E., Aragonés, M.D., Martínez, A.M., and Fernández, I. (1996) Involvement of Sphingolipids in the Endothelin-1 Signal Transduction Mechanism in Rat Brain, Neurosci. Lett. 220, 121–124.

    Article  PubMed  Google Scholar 

  6. Catalán, R.E., Martínez, A.M., Aragonés, M.D., Fernández, I., Miguel, B.G., Pérez, M.J., and Calcerrada, M.C. (1995) Endothelin-Stimulated Phosphoinositide Turnover and Protein Kinase C Translocation in Rat Synaptosomes, Biochem. Mol. Biol. Int. 38, 7–14.

    Google Scholar 

  7. Catalán, R.E., Martínez, A.M., Aragonés, M.D., and Hernández, F. (1995) Endothelin-1 Stimulates Myristoylated Alanine-Rich C-Kinase Substrate (MARCKS) Phosphorylation in Rat Cerebellar Slices, Neurosci. Lett. 194, 53–56.

    Article  PubMed  Google Scholar 

  8. Catalán, R.E., Martínez, A.M., Aragonés, M.D., Martínez, A., and Díaz, G. (1996) Endothelin Stimulates Phosphoinositide Hydrolysis and PAF Synthesis in Brain Microvessels, J. Cer. Blood Flow Metab. 16, 1325–1334.

    Article  Google Scholar 

  9. Catalán, R.E., Martínez, A.M., Aragonés, M.D., Hernández, F., and G. Díaz, G. (1996) Endothelin Stimulates Protein Phosphorylation in Blood-Brain Barrier, Biochem. Biophys. Res. Commun. 219, 366–369.

    Article  PubMed  Google Scholar 

  10. Yanagisawa, M., Kurihara, M., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., Yazaki, Y., Goto, K., and Masaki, T. (1988) A Novel Potent Vasoconstrictor Peptide Produced by Vascular Endothelial Cells, Nature (London) 332, 411–415.

    Article  CAS  Google Scholar 

  11. Haynes, W.G., and Webb, D.J. (1998) Endothelin as a Regulator of Cardiovascular Function in Health and Disease, J. Hypertens. 16, 1081–1098.

    Article  PubMed  CAS  Google Scholar 

  12. Gulati, A., and Srimal, R.C. (1992) Endothelin Mechanisms in the Central Nervous System: A Target for Drug Development, Drug Dev. Res. 26, 361–387.

    Article  CAS  Google Scholar 

  13. Maeda, S., Miyauchi, T., Kobayashi, T., Goto, K., and Matsuda, M. (1998) Exercise Causes Tissue-Specific Enhancement of Endothelin-1 mRNA Expression in Internal Organs, J. Appl. Physiol. 85, 425–431.

    PubMed  CAS  Google Scholar 

  14. Norton, K.I., Jones, M.T., and Armstrong, R.B. (1990) Oxygen Consumption and Distribution of Blood Flow in Rats Climbing a Laddermill, J. Appl. Physiol. 68, 241–247.

    PubMed  CAS  Google Scholar 

  15. Onuoha, G.N., Nicholls, D.P., Patterson, A., and Beringer, T. (1998) Neuropeptide Secretion in Exercise, Neuropeptides 32, 319–325.

    Article  PubMed  CAS  Google Scholar 

  16. Lash, J.M. (1998) Exercise Training Enhances Adrenergic Constriction and Dilation in the Rat Spinotrapezius Muscle, J. Appl. Physiol. 85, 168–174.

    PubMed  CAS  Google Scholar 

  17. Raven, P.B., Welch-O'Connor, R.M., and Shi, X. (1998) Cardiovascular Function Following Reduced Aerobic Activity, Med. Sci. Sports Exerc. 30, 1041–1052.

    Article  PubMed  CAS  Google Scholar 

  18. Best, P.J., Tajik, A.J., Gibbons, R.J., and Pellikka, P.A. (1998) The Safety of Treadmill Exercise Stress Testing in Patients with Abdominal Aortic Aneurysms, Ann. Intern. Med. 129, 628–631.

    PubMed  CAS  Google Scholar 

  19. McMurray, R.G., Ainsworth, B.E., Harrel, J.S., Griggs, T.R., and Williams, O.D. (1998) Is Physical Activity of Aerobic Power More Influential on Reducing Cardiovascular Disease Risk Factors? Med. Sci. Sports Exerc. 30, 1521–1529.

    Article  PubMed  CAS  Google Scholar 

  20. Itoh, H., Ohkuwa, T., Yamamoto, T., Sato, Y., Miyamura, M., and Naoi, M. (1998) Effects of Endurance Physical Training on Hydroxyl Radical Generation in Rat Tissues, Life Sci. 63, 1921–1929.

    Article  PubMed  CAS  Google Scholar 

  21. Kanda, K., and Hashizume, K. (1998) Effects of Long-Term Physical Exercise on Age-Related Changes of Spinal Motoneurons and Peripheral Nerves in Rats, Neurosci. Res. 31, 69–75.

    Article  PubMed  CAS  Google Scholar 

  22. Mechau, D., Mücke, S., Weib, M., and Liesen, H. (1998) Effect of Increasing Running Velocity on Electroencephalogram in a Field Test, Eur. J. Appl. Physiol. 78, 340–345.

    Article  CAS  Google Scholar 

  23. Oliff, H.S., Berchtold, N.C., Isackson, P., and Cotman, C.W. (1998) Exercise-Induced Regulation of Brain-Derived Neurotrophic Factor (BDNF) Transcripts in the Rat Hippocampus, Mol. Brain Res. 61, 147–153.

    Article  PubMed  CAS  Google Scholar 

  24. Lacey, B.C., and Lacey, J.L. (1978) Two-Way Communication Between the Heart and the Brain, Am. Psychol. 33, 99–113.

    Article  PubMed  CAS  Google Scholar 

  25. Brosche, T., and Platt, D. (1998) The Biological Significance of Plasmalogens in Defense Against Oxidative Damage, Exp. Gerontol. 33, 363–369.

    Article  PubMed  CAS  Google Scholar 

  26. Chen, M., Mason, R.P., and Tulenko, T.N. (1995) Atherosclerosis Alters the Composition, Structure and Function of Arterial Smooth Muscle Cell Plasma Membranes, Biochim. Biophys. Acta 1272, 101–112.

    PubMed  Google Scholar 

  27. Chatterjee, S. (1998) Sphingolipids in Atherosclerosis and Vascular Biology, Arterioscler. Thromb. Vasc. Biol. 18, 1523–1533.

    PubMed  CAS  Google Scholar 

  28. Augé, N., Nègre-Salvayre, A., Salvayre, R., and Levade, T. (2000) Sphingomyelin Metabolites in Vascular Cell Signalling and Atherogenesis, Prog. Lipid Res. 39, 207–229.

    Article  PubMed  Google Scholar 

  29. Brooks, G.A., and White, T.P. (1978) Determination of Metabolic and Heart Rate Responses of Rat to Treadmill Exercise, J. Appl. Physiol. 45, 1009–1015.

    PubMed  CAS  Google Scholar 

  30. Aoki, H., Kobayashi, S., Nishimura, J., and Kanaide, H. (1994) Sensitivity of G-Protein Involved in Endothelin-1-Induced Ca2+ Influx to Pertussis Toxin in Porcine Endothelial Cell in situ, Br. J. Pharmacol. 111, 989–996.

    PubMed  CAS  Google Scholar 

  31. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  32. Molano, F., Saborido, A., Delgado, J., Morán, M., and Megías, A. (1999) Rat Liver Lysosomal and Mitochondrial Activities Are Modified by Anabolic-Androgenic Steroids, Med. Sci. Sports Exerc. 31, 243–250.

    Article  PubMed  CAS  Google Scholar 

  33. Bligh, E.G., and Dyer, W.J. (1959) A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol. 39, 911–917.

    Google Scholar 

  34. Van Veldhoven, P.P., Bishop, W.R., Yurivich, D.A., and Bell, R.M. (1995) Ceramide Quantitation: Evaluation of a Mixed Micellar Assay Using E. coli Diacylglycerol Kinase, Biochem. Mol. Biol. Int. 36, 21–30.

    PubMed  Google Scholar 

  35. Preiss, J., Loomis, C.R., Bishop, W.R., Stein, R., Niedel, J.E., and Bell, R.M. (1986) Quantitative Measurement of sn-1,2-Diacylglycerols Present in Platelets, Hepatocytes, and ras- and sis-Transformed Normal Rat Kidney Cells, J. Biol. Chem. 261, 8597–8600.

    PubMed  CAS  Google Scholar 

  36. Catalán, R.E., Martínez, A.M., and Aragonés, M.D. (1984) Evidence for a Role of Somatostatin in Lipid Metabolism of Liver and Adipose Tissue, Regul. Peptides 8, 147–159.

    Article  Google Scholar 

  37. Booth, F.W., and Thomason, D.B. (1991) Molecular and Cellular Adaptation of Muscle in Response to Exercise: Perspectives of Various Models, Physiol. Rev. 71, 541–585.

    PubMed  CAS  Google Scholar 

  38. Delgado, J., Saborido, A., Morán, M., and Megías, A. (1999) Chronic and Acute Exercise Do Not Alter Ca2+ Regulatory Systems and Ectonucleotidase Activities in Rat Heart, J. Appl. Physiol. 87, 152–160.

    PubMed  CAS  Google Scholar 

  39. Mukhin, D.N., Chao, F.F., and Kruth, H.S. (1995) Glycosphingolipid Accumulation in the Aortic Wall Is Another Feature of Human Atherosclerosis, Arterioscler. Thromb. Vasc. Biol. 15, 1607–1615.

    PubMed  CAS  Google Scholar 

  40. Laughlin, M.H., Armstrong, R.B., White, J., and Rouk, K. (1982) A Method for Using Microspheres to Measure Muscle Blood Flow in Exercising Rat, J. Appl. Physiol. 52, 1629–1635.

    PubMed  CAS  Google Scholar 

  41. Saborido, A., Molano, F., Moro, G., and Megías, A. (1995) Regulation of Dihydropyridine Receptor Levels in Skeletal and Cardiac Muscle by Exercise Training, Pflügers Arch.-Eur. J. Physiol. 429, 364–369.

    Article  CAS  Google Scholar 

  42. Andrieu-Abadie, N., Carpentier, S., Salvayre, R., and Levade, T. (1988) The Tumor Necrosis Factor-Sensitive Pool of Sphingomyelin Is Resynthesized in a Distinct Compartment of the Plasma Membrane, Biochem. J. 333, 91–97.

    Google Scholar 

  43. Johns, D.G., and Webb, R.C. (1998) TNF-α-induced Endothelium-Independent Vasodilatation: A Role for Phospholipase A2-Dependent Ceramide Signalling, Am. J. Physiol. 275, H1592-H1598.

    PubMed  CAS  Google Scholar 

  44. Morril, G.A., Gupta, R.K., Kostellow, A.B., Ma, G-Y., Zhang, A., Altura, B.T., and Altura, B.M. (1998) Mg2+ Modulates Membrane Sphingolipid and Lipid Second Messenger Levels in Vascular Smooth Muscle Cells, FEBS Lett. 440, 167–171.

    Article  Google Scholar 

  45. Jones, A.W., Magliola, L., Waters, C.B., and Rubin, L.J. (1998) Endothelin-1 Activates Phospholipases and Channels at Similar Concentrations in Porcine Coronary Arteries, Am. J. Physiol. 274, C1583-C1591.

    PubMed  CAS  Google Scholar 

  46. Farooqui, A.A., Yang, H-CH., and Horrocks, L.A. (1995) Plasmalogens, Phospholipase A2 and Signal Transduction, Brain Res. Rev. 21, 152–161.

    Article  PubMed  CAS  Google Scholar 

  47. Farooqui, A.A., Yang, H.C., Rosenberger, T.A., and Horrocks, L.A. (1997) Phospholipase A2 and Its Role in Brain Tissue, J. Neurochem. 69, 889–901.

    Article  PubMed  CAS  Google Scholar 

  48. McHowat, J., Liu, S., and Creer, M.H. (1998) Selective Hydrolysis of Plasmalogen Phospholipids by Ca2+-Independent PLA2 in Hypoxic Ventricular Myocytes, Am. J. Physiol. 274, C1727-C1737.

    PubMed  CAS  Google Scholar 

  49. McHowat, J., and Creer, M.H. (2000) Selective Plasmalogen Substrate Utilization by Thrombin-Stimulated Ca2+-Independent PLA2 in Cardiomyocytes, Am. J. Physiol. 278, H1933-H1940.

    CAS  Google Scholar 

  50. Morril, G.A., Gupta, R.K., Kostellow, A.B., Ma, G-Y., Zhang, A., Altura, B.T., and Altura, B.M. (1997) Mg2+ Modulates Membrane Lipids in Vascular Smooth Muscle: A Link to Atherogenesis, FEBS Lett. 408, 191–194.

    Article  Google Scholar 

  51. Anuradha, C.V., and Balakrishnan, S.D. (1998) Effect of Exercise-Training on Lipid Peroxidation and Antioxidant Enzymes in the Aorta of Fructose-Fed Rats, Med. Sci. Res. 26, 439–443.

    CAS  Google Scholar 

  52. Bialecki, R.A., and Tulenko, T.N. (1989) Excess Membrane Cholesterol Alters Calcium Channels in Arterial Smooth Muscle, Am. J. Physiol. 257, C306-C314.

    PubMed  CAS  Google Scholar 

  53. Schwenke, D.C., and Behr, S.R. (1998) Vitamin E Combined with Selenium Inhibits Atherosclerosis in Hypercholesterolemic Rabbits Independently of Effects on Plasma Cholesterol Concentrations, Circ. Res. 83, 366–377.

    PubMed  CAS  Google Scholar 

  54. Jones, A.W., Rubin, L.J., and Magliola, L. (1999) Endothelin-1 Sensitivity of Porcine Coronary Arteries Is Reduced by Exercise Training and Is Gender Dependent, J. Appl. Physiol. 87, 1172–1177.

    PubMed  CAS  Google Scholar 

  55. Bowles, D.K., Laughlin, M.H., and Sturek, M. (1995) Exercise Training Alters the Ca2+ and Contractile Responses of Coronary Arteries to Endothelin-1, J. Appl. Physiol. 78, 1079–1087.

    PubMed  CAS  Google Scholar 

  56. White, L.R., Leseth, K.H., Juul, R., Adner, M., Cappelen, J., Aasly, J., and Edvinsson, L. (1998) Increased Endothelin ETB Contractile Activity in Cultured Segments of Human Temporal Artery, Acta Physiol. Scand. 164, 21–27.

    Article  PubMed  CAS  Google Scholar 

  57. Spinedi, A., Di Bartolomeo, S., and Piacentini, M. (1998) Apoptosis Induced by N-Hexanoylsphingosine in CHP-100 Cells Associates with Accumulation of Endogenous Ceramide and Is Potentiated by Inhibition of Glucocerebroside Synthesis, Cell Death Differ. 5, 785–791.

    Article  PubMed  CAS  Google Scholar 

  58. Jasmin, B.J., Lavoie, P.A., and Gardiner, P.F. (1988) Fast Axonal Transport of Labeled Proteins in Motoneurons of Exercise-Trained Rats, Am. J. Physiol. 255, C731-C736.

    PubMed  CAS  Google Scholar 

  59. Urano, S., Sato, Y., Otonari, T., Makabe, S., Suzuki, S., Ogata, M., and Endo, T. (1998) Aging and Antioxidative Stress in Neurodegeneration, Biofactors 7, 103–112.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Megías.

About this article

Cite this article

Latorre, E., Marán, M., Aragonés, M.D. et al. Exercise training-induced changes in sensitivity to endothelin-1 and aortic and cerebellum lipid profile in rats. Lipids 37, 43–52 (2002). https://doi.org/10.1007/s11745-002-0862-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-002-0862-x

Keywords

Navigation