Skip to main content
Log in

Variation in molecular species of polar lipids from Thermoplasma acidophilum depends on growth temperature

  • Communication
  • Published:
Lipids

Abstract

Five types of molecular species of C40 isoprenoid chains, having different numbers of cyclopentane rings, were detected in the ether core lipid of Thermoplasma acidophilum. The average cyclization number of the hydrocarbon chains in the lipids increased with increasing growth temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EI:

electron ionization

GC-MS:

gas chromatography-mass spectrometry

GLC:

gas-liquid chromatography

HPTLC:

high-performance thin-layer chromatography

TLC:

thin-layer chromatography

References

  1. Gambacorta, A., Gliozzi, A., and De Rosa, M. (1995) Archaeal Lipids and Their Biotechnological Applications, World J. Microbiol. Biotechnol. 11, 115–131.

    Article  CAS  Google Scholar 

  2. Sprott, G.D. (1992) Structures of Archaebacterial Membrane Lipids. J. Bioenerg. Biomembr. 24, 555–566.

    Article  PubMed  CAS  Google Scholar 

  3. Nishihara, M., Morii, H., and Koga, Y. (1987) Structure Determination of a Quartet of Novel Tetraether Lipids from Methanobacterium thermoautotrophicum, J. Biochem. 101, 1007–1015.

    PubMed  CAS  Google Scholar 

  4. De Rosa, M., and Gambacorta, A. (1988) The Lipids of Archaebacteria, Prog. Lipid Res. 27, 153–175.

    Article  PubMed  Google Scholar 

  5. Langworthy, T.A. (1977) Long-chain Diglycerol Tetraether from Thermoplasma acidophilum, Biochim. Biophys. Acta 487, 37–50.

    PubMed  CAS  Google Scholar 

  6. De Rosa, M., De Rosa, S., and Gambacorta, A. (1977) 13C-NMR Assignments and Biosynthetic Data for the Ether Lipids of Caldariella, Phytochemistry, 16, 1909–1912.

    Article  Google Scholar 

  7. De Rosa, M., Gambacorta, A., Nicolaus, B., Sodano, S., and Bu'Lock, J.D. (1980) Structural Regularities in Tetraether Lipids of Caldariella and Their Biosynthetic and Phyletic Implications, Phytochemistry 19, 833–836.

    Article  Google Scholar 

  8. De Rosa, M., Esposito, E., Gambacorta, A., Nicolaus, B., and Bu'Lock, J.D. (1980) Effects of Temperature on Their Lipid Composition of Caldariella acidophila, Phytochemistry 19, 827–831.

    Article  Google Scholar 

  9. Darland, G., Brock, T.D., Samsonoff, W., and Conti, S.F. (1970) A Thermophilic, Acidophilic Mycoplasma Isolated from a Coal Refuse Pile, Science 170, 1416–1418.

    Article  PubMed  CAS  Google Scholar 

  10. Langworthy, T.A., Smith, P.F., and Mayberry, W.R. (1972) Lipids of Thermoplasma acidophilum, J. Bacteriol. 112, 1193–1200.

    PubMed  CAS  Google Scholar 

  11. Yang, L.L., and Haug, A. (1979) Structure of Membrane Lipids and Physico-biochemical Properties of the Plasma Membrane from Thermoplasma acidophilum, Adapted to Growth at 37°C, Biochim. Biophys. Acta 573, 308–320.

    PubMed  CAS  Google Scholar 

  12. Swain, M., Brisson, J.-R., Sprott, G.D., Cooper, F.P., and Patel, G.B. (1997) Identification of β-l-Gulose as the Sugar Moiety of the Main Polar Lipid Thermoplasma acidophilum, Biochim. Biophys. Acta 1345, 56–64.

    PubMed  CAS  Google Scholar 

  13. Uda, I., Sugai, A., Kon, K., Ando, S., Itoh, Y.H., and Itoh, T., (1999) Isolation and Characterization of Novel Neutral Glycolipids from Thermoplasma acidophilum, Biochim. Biophys. Acta 1439, 363–370.

    PubMed  CAS  Google Scholar 

  14. Uda, I., Sugai, A., Shimizu, A., Itoh, Y.H., and Itoh, T. (2000) Glucosylcaldarchaetidylglycerol, a Minor Phosphoglycolipid from Thermoplasma acidophilum, Biochim. Biophys. Acta 1484, 83–86.

    PubMed  CAS  Google Scholar 

  15. Mayberry-Carson, K.J., Langworthy, T.A., Mayberry, W.R., and Smith, P.F. (1974) A New Class of Lipopolysaccharide from Thermoplasma acidophilum, Biochim. Biophys. Acta 360, 217–229.

    PubMed  CAS  Google Scholar 

  16. Smith, P.F. (1980) Sequence and Glucosidic Bond Arrangement of Sugars in Lipopolysaccharide from Thermoplasma acidophilum, Biochim. Biophys. Acta 619, 367–373.

    PubMed  CAS  Google Scholar 

  17. Nozawa, Y., Iida, H., Fukushima, H., Ohki, K., and Ohnishi, S. (1974) Studies on Tetrahymena Membranes: Temperature-Induced Alterations in Fatty Acid Composition of Various Membrane Fractions in Tetrahymena pyriformis and Its Effect on Membrane Fluidity as Inferred by Spin-Label Study, Biochim. Biophys. Acta 367, 134–147.

    Article  PubMed  CAS  Google Scholar 

  18. Kito, M., Aibara, S., Kato, M., Ishinaga, M., and Hata, T. (1973) Effect of Changes in Fatty Acid Composition of Phospholipid Species on the β-Galactoside Transport System of Escherichia coli K-12, Biochim. Biophys. Acta 298, 69–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikuko Uda.

About this article

Cite this article

Uda, I., Sugai, A., Itoh, Y.H. et al. Variation in molecular species of polar lipids from Thermoplasma acidophilum depends on growth temperature. Lipids 36, 103–105 (2001). https://doi.org/10.1007/s11745-001-0914-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-001-0914-2

Keywords

Navigation