Skip to main content
Log in

Incorporation of α-tocopherol in marine lipid-based liposomes: in vitro and in vivo studies

  • Articles
  • Published:
Lipids

Abstract

Liposomes made from a natural marine lipid extract and containing a high polyunsaturated n−3 fatty lipid ratio were envisaged as oral route vectors and a potential α-tocopherol supplement. The behavior of vesicles obtained by simple filtration and of giant vesicles prepared by electroformation was investigated in gastrointestinal-like conditions. The influence of α-tocopherol incorporation into liposomes was studied on both physical and chemical membrane stability. Propanal, as an oxidation product of n−3 polyunsaturated fatty acids, was quantified by static headspace gas chromatography when α-tocopherol incorporation into liposome ratios ranged from 0.01 to 12 mol%. Best oxidative stability was obtained for liposomes that contained 5 mol% α-tocopherol. Compared to the other formulas, propanal formation was reduced, and time of the oxidation induction phase was longer. Moreover, α-tocopherol induced both liposome structural modifications, evidenced by turbidity, and phospholipid chemical hydrolysis, quantified as the amount of lysophospholipids. This physicochemical liposome instability was even more pronounced in acid storage conditions, i.e., α-tocopherol incorporation into liposome membranes accelerated the structural rearrangements and increased the rate of phospholipid hydrolysis. In particular, giant vesicles incubated at pH 1.5 underwent complex irreversible shape transformations including invaginations. In parallel, the absorption rate of α-tocopherol was measured in lymph-cannulated rats when α-tocopherol was administrated, as liposome suspension or added to sardine oil, through a gastrostomy tube. α-Tocopherol recovery in lymph was increased by almost threefold, following liposome administration. This may be related to phospholipids that should favor α-tocopherol solubilization and to liposome instability in the case of a high amount of α-tocopherol in the membranes. A need to correlate results obtained from in vitro liposome behavior with in vivo lipid absorption was demonstrated by this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DHA:

docosahexaenoic acid

EPA:

eicosapentaenoic acid

GC:

gas chromatography

HPLC:

high-performance liquid chromatography

LPC:

lysophosphatidylcholine

LPE:

lysophosphatidylethanolamine

OD:

optical density

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PUFA:

polyunsaturated fatty acid

References

  1. Jenski, L., Scherer, J., Caldwell, L.D., Ney, V., and Stillwell, W. (1998) The Triggering Signal Dictates the Effect of Docosahexaenoic Acid on Lymphocyte Function in Vitro, Lipids 33, 869–878.

    Article  PubMed  CAS  Google Scholar 

  2. Stanley, J. (1999) The Role of Fish Oil in Disease Management. Rheumatoid Arthritis, Lipid Technol., 61–64.

  3. Kelley, D.S., Taylor, P.C., Nelson, G.J., Schmidt, P.C., Ferreti, A., Erickson, K.L., Yu, R., Chandra, R., and Mackey, B.E. (1999) Docosahexaenoic Acid Ingestion Inhibits Natural Killer Cell Activity and Production of Inflammatory Mediators in Young Healthy Men, Lipids 34, 317–324.

    Article  PubMed  CAS  Google Scholar 

  4. Kremer, J.M. (2000) n−3 Fatty Acid Supplements in Rheumatoid Arthritis, Am. J. Clin. Nutr. 71, 349S-351S.

    PubMed  CAS  Google Scholar 

  5. Roche, H.M., and Gibney, M.J. (2000) Effect of Long-Chain n−3 Polyunsaturated Fatty Acids on Fasting and Postprandial Triacylglycerol Metabolism, Am. J. Clin. Nutr. 71, 232S-237S.

    PubMed  CAS  Google Scholar 

  6. Harris, W. (1989) Fish Oils and Plasma Lipid and Lipoprotein Metabolism in Humans: A Critical Review, J. Lipid Res. 30, 785–807.

    PubMed  CAS  Google Scholar 

  7. Nestel, P.J. (2000) Fish Oil and Cardiovascular Disease: Lipids and Arterial Function, Am. J. Clin. Nutr. 71, 228S-231S.

    PubMed  CAS  Google Scholar 

  8. Vognild, E., Elvevoll, E.O., Brox, J., Olsen, R., Barstad, H., Aursand, M., and Osterud, B. (1998) Effects of Dietary Marine Oils and Olive Oils on Fatty Acid Composition, Platelet Membrane Fluidity, Platelet Responses, and Serum Lipids in Healthy Humans, Lipids 33, 427–436.

    Article  PubMed  CAS  Google Scholar 

  9. Ikeda, I., Hiroko, Y., Tomooka, M., Yosef, A., Imaizumi, K., Tsuji, H., and Seto, A. (1998) Effects of Long-Term Feeding of Marine Oils with Different Positional Distribution of Eicosapentaenoic and Docosahexaenoic Acids on Lipid Metabolism, Eicosanoid Production, and Platelet Aggregation in Hypercholesterolemic Rats, Lipids 33, 897–904.

    Article  PubMed  CAS  Google Scholar 

  10. De Deckere, E.A.M., Korver, O., Verschuren, P.M., and Katan, M.B. (1998) Health Aspects of Fish and n−3 Polyunsaturated Fatty Acids from Plant and Marine Origin, Eur. J. Clin. Nutr. 52, 749–753.

    Article  PubMed  CAS  Google Scholar 

  11. Connor, W. (2000) Importance of n−3 Fatty Acids in Health and Disease, Am. J. Clin. Nutr. 71, 171S-175S.

    PubMed  CAS  Google Scholar 

  12. Nelson, G.J., Schmidt, P.C., Bartolini, G.L., Kelley, D.S., and Kyle, D. (1997) The Effect of Dietary Docosahexaenoic Acid on Plasma Lipoproteins and Tissue Fatty Acid Composition in Humans, Lipids 32, 1137–1146.

    Article  PubMed  CAS  Google Scholar 

  13. Frankel, E.N. (1984) Lipid Oxidation: Mechanisms, Products, and Biological Significance, J. Am. Oil Chem. Soc. 61, 1908–1917.

    CAS  Google Scholar 

  14. Kagan, V.E. (1988) Lipid Peroxidation in Biomembranes, p. 181, CRC Press, Boca Raton.

    Google Scholar 

  15. Halliwell, B. (1985) Oxidation of Low-Density Lipoproteins: Questions of Initiation, Propagation, and the Effect of Antioxidants, Am. J. Clin. Nutr. 61, 670–677.

    Google Scholar 

  16. Noguchi, N., and Niki, E. (1998) Dynamics of Vitamin E Action Against LDL Oxidation, Free Radicals Res. 28, 561–572.

    Article  CAS  Google Scholar 

  17. Massey, F.B., and Pownall, H.J. (1998) Interaction of α-Tocopherol with Model Human High-Density Lipoproteins, Biophys. J. 75, 2923–2931.

    PubMed  CAS  Google Scholar 

  18. Kamal-Eldin, A., and Appelqvist, L.A. (1996) The Chemistry and Antioxidant Properties of Tocopherols and Tocotrienols, Lipids 31, 671–701.

    Article  PubMed  CAS  Google Scholar 

  19. Bostick, R.M., Potter, J.D., McKenzie, D.R., Sellers, T.A., Kushi, L.H., Steinmetz, K.A., and Folsom, A.R. (1993) Reduced Risk of Colon Cancer with High Intake of Vitamin E: The Iowa Women’s Health Study, Cancer Res. 53, 4230–4237.

    PubMed  CAS  Google Scholar 

  20. Le Gardeur, B.Y., Lopez-S, A., and Johnson, W.D.A. (1990) Case-Control Study of Serum Vitamins A, E, and C in Lung Cancers Patients, Nutr. Cancer 14, 133–140.

    Article  Google Scholar 

  21. Chan, A.C. (1998) Vitamin E and Atherosclerosis, J. Nutr. 128, 1593–1596.

    PubMed  CAS  Google Scholar 

  22. Pryor, W.A. (2000) Vitamin E and Heart Disease: Basic Science to Clinical Intervention Trials, Free Radicals Biol. Med. 28, 141–164.

    Article  CAS  Google Scholar 

  23. Stanley, J. (1999) Vitamin E—Nutrient or Pharmaceutical, Lipid Technol., 36–39.

  24. Kayden, H.J., and Traber, M.G. (1993) Absorption, Lipoprotein Transport, and Regulation of Plasma Concentrations of Vitamin E in Humans, J. Lipid Res. 34, 343–358.

    PubMed  CAS  Google Scholar 

  25. Senior, J.H., Gregoriadis, G. Muller, D.P.R., Pathak, Y.V., and McIntyres, N. (1988) Liposomes Facilitate Uptake of Lipid-Soluble Vitamins After Oral Delivery to Normal and Bile-Duct Obstructed Rats, Biochem. Soc. Trans. 17, 121–122.

    Google Scholar 

  26. Kelleher, J., and Losowsky, M.S. (1970) The Absorption of α-Tocopherol in Man, Br. J. Nutr. 24, 1033–1047.

    Article  PubMed  CAS  Google Scholar 

  27. Scott, M.L. (1978) Vitamin E, in The Fat-Soluble Vitamins. Handbok of Lipid Research (DeLuca, H.L., ed.), pp. 133–210, Plenum Press, New York.

    Google Scholar 

  28. Bontempo, V., Baldi, A., Cheli, F., Fantuz, F., Politis, I., Carli, S., and Dell’Orto, V. (2000) Kinetic Behavior of Three Preparations of α-Tocopherol After Oral Administration to Postpubertal Heifers, Am. J. Vet. Res. 61, 589–593.

    Article  PubMed  CAS  Google Scholar 

  29. Julianto, T., Yuen, K.H., and Noor, A.M. (2000) Improved Bioavailability of Vitamin E with a Self Emulsifying Formulation, Int. J. Pharm. 200, 53–57.

    Article  PubMed  CAS  Google Scholar 

  30. Borel, P., Pasquier, B., Armand, M., Tyssandier, V., Grolier, P., Alexandre-Gouabau, M.C., André, M., Senft, M., Peyrot, J., Jaussan, V., Lairon, D., and Azais-Braesco, V. (2001) Processing of Vitamin A and E in the Human Gastrointestinal Tract, Am. J. Physiol. Gastrointest. Liver Physiol. 280, G95-G103.

    PubMed  CAS  Google Scholar 

  31. Bateman, N.E., and Ucellini, D.A. (1984) Effect of Formulation on the Bioavailability of Retinol, d-α-Tocopherol and Riboflavine, J. Pharm. Pharmacol. 36, 461–464.

    PubMed  CAS  Google Scholar 

  32. Baudimant, G., Maurice, M., Landrein, A., Durand, G., and Durand, P. (1996) Purification of Phosphatidylcholine with High Content of DHA from Squid Illex argentinus by Countercurrent Chromatography, J. Liq. Chrom. Rel. Technol. 19, 1793–1804.

    CAS  Google Scholar 

  33. Nacka, F., Cansell, M., and Entressangles, B. (2001) In Vitro Behavior of Marine Lipid-Based Liposomes. Influence of pH, Temperature, Bile Salts, and Phospholipase A2, Lipids 36, 35–42.

    PubMed  CAS  Google Scholar 

  34. Nacka, F., Cansell, M., Gouygou, J.P., Gerbeaud, C., Méléard, P., and Entressangles, B. (2001) Physical and Chemical Stability of Marine Lipid-Based Liposomes Under Acid Conditions, Colloids Surf. B: Biointerfaces 20, 257–266.

    Article  CAS  Google Scholar 

  35. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957) A Simple Method for Isolation and Purification of Total Lipides from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  36. Ames, B.N. (1966) Assay of Inorganic Phosphate, Total Phosphate, and Phosphatase, Methods Enzymol. 18, 115–118.

    Google Scholar 

  37. Bollman, J.L., Cain, J.C., and Grindlay, J.H. (1948) Techniques for the Collection of Lymph from the Liver, Small Intestine, or Thoracic Duct of Rat, J. Lab. Clin. Med. 33, 1349–1352.

    PubMed  CAS  Google Scholar 

  38. Combe, N., Constantin, M.J., and Entressangles, B. (1981) Lymphatic Absorption of Nonvolatile Oxidation Products of Heated Oils in the Rat, Lipids 16, 8–14.

    PubMed  CAS  Google Scholar 

  39. Nara, E., Miyashita, K., Ota, T., and Nadachi, Y. (1998) The Oxidative Stabilities of Polyunsaturated Fatty Acids in Salmon Egg Phosphatidylcholine Liposomes, Fisheries Sci. 64, 282–286.

    CAS  Google Scholar 

  40. Saito, H., and Ishihara, K. (1997) Antioxidant Activity and Active Sites of Phospholipids as Antioxidants, J. Am. Oil Chem. Soc. 74, 1531–1536.

    CAS  Google Scholar 

  41. Bandarra, N.M., Campos, R.M., Batista, I., Nunes, M.L., and Empis, J.M. (1999) Antioxidant Synergy of α-Tocopherol and Phospholipids, J. Am. Oil Chem. Soc. 76, 905–913.

    CAS  Google Scholar 

  42. Nara, E., Miyashita, K., and Ota, T. (1997) Oxidative Stability of Liposomes Prepared from Soybean PC, Chicken Egg PC, and Salmon Egg PC, Biosci. Biotechnol. Biochem. 61, 1736–1738.

    Article  PubMed  CAS  Google Scholar 

  43. Finean, J.B. (1990) Interaction between Cholesterol and Phospholipid in Hydrated Bilayers, Chem. Phys. Lipids 54, 147–156.

    Article  CAS  Google Scholar 

  44. Ohyashiki, T., Karino, T., and Matsui, K. (1993) Stimulation of Fe2+-Induced Lipid Peroxidation in Phosphatidylcholine Liposomes by Aluminium Ions at Physiological pH, Biochim. Biophys. Acta 1170, 182–188.

    PubMed  CAS  Google Scholar 

  45. Grit, M., and Crommelin, D.J.A. (1993) Chemical Stability of Liposomes: Implications for Their Physical Stability, Chem. Phys. Lipids 64, 3–18.

    Article  PubMed  CAS  Google Scholar 

  46. Halks-Miller, M., Guo, L.S.S., and Hamilton, R.L. (1985) Tocopherol-Phospholipid Liposomes: Maximum Content and Stability to Serum Proteins, Lipids 20, 195–200.

    PubMed  CAS  Google Scholar 

  47. Wassal, S.R., Yang, R.C., Wang, L., Phelps, T.M., Erhinger, W., and Stillwell, W. (1990) Magnetic Resonance Studies of the Structural Role of Vitamin E in Phospholipid Model Membranes, Bull. Magnet. Res. 12, 60–64.

    Google Scholar 

  48. Berndl, K., Käs, J., Lipowsky, R., Sackmann, E., and Seifert, U. (1990) Shape Transformations of Giant Vesicles: Extreme Sensitivity to Bilayer Asymmetry, Europhys. Lett. 13, 659–664.

    Google Scholar 

  49. Farge, E., and Devaux, P.F. (1992) Shape Changes of Giant Liposomes Induced by an Asymmetric Transmembrane Distribution of Phospholipids, Biophys. J. 61, 347–357.

    Article  PubMed  CAS  Google Scholar 

  50. Bieri, J.G., Corash, L., and Hubbard, V.S. (1983) Medical Uses of Vitamin E, New Engl. J. Med. 308, 1063–1071.

    Article  PubMed  CAS  Google Scholar 

  51. Ikeda, I., Imasato, Y., Sasaki, E., and Sugano, M. (1996) Lymphatic Transport of Alpha-, Gamma-, and Delta-Tocotrienols and Alpha-Tocopherol in Rats, Int. J. Vitam. Nutr. Res. 66, 217–221.

    PubMed  CAS  Google Scholar 

  52. Traber, M.G., Kayden, H.J., Green, J.B., and Green, M.H. (1986) Absorption of Water-Miscible Forms of Vitamin E in a Patient with Cholestasis and in Rats, Am. J. Clin. Nutr. 44, 914–923.

    PubMed  CAS  Google Scholar 

  53. Porsgaard, T., and Høy, C.E. (2000) Absorption by Rats of Tocopherols Present in Edible Vegetable Oils, Lipids 35, 1073–1078.

    Article  PubMed  CAS  Google Scholar 

  54. Tijburg, L.B., Haddeman, E., Kivits, G.A., Weststrate, J.A., and Brink, E.J. (1997) Dietary Linoleic Acid at High and Reduced Dietary Fat Level Decreases the Faecal Excretion of Vitamin E in Young Rats, Br. J. Nutr. 77, 327–336.

    Article  PubMed  CAS  Google Scholar 

  55. Muralidhara, K.S., and Hollander, D. (1997) Intestinal Absorption of Alpha-Tocopherol in the Unanesthetized Rat. The Influence of Luminal Constituents on the Absorptive Process, J. Lab. Clin. Med. 90, 85–91.

    Google Scholar 

  56. Koo, S.I., and Noh, S.K. (2001) Phosphatidylcholine Inhibits and Lysophosphatidylcholine Enhances the Lymphatic Absorption of Alpha-Tocopherol in the Adult Rats, J. Nutr. 131, 717–722.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maud Cansell.

About this article

Cite this article

Nacka, F., Cansell, M., Méléard, P. et al. Incorporation of α-tocopherol in marine lipid-based liposomes: in vitro and in vivo studies. Lipids 36, 1313–1320 (2001). https://doi.org/10.1007/s11745-001-0846-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-001-0846-x

Keywords

Navigation