Skip to main content
Log in

Soluble fiber and soybean protein reduce atherosclerotic lesions in guinea pigs. Sex and hormonal status determine lesion extension

  • Articles
  • Published:
Lipids

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

These studies were undertaken to assess guinea pigs as potential models for early atherosclerosis development. For that purpose, male, female, and ovariectomized (to mimic menopause) guinea pigs were fed a control or a TEST diet for 12 wk. Differences between diets were the type of protein (60% casein/40% soybean vs. 100% soybean) and the type of fiber (12.5% cellulose vs. 2.5% cellulose/5% pectin/5% psyllium) for control and TEST diets, respectively. Diet had no effect on plasma cholesterol or triacylglycerol (TAG) concentrations; however, there were significant effects related to sex/hormonal status. Ovariectomized guinea pigs had higher plasma cholesterol and TAG concentrations than males or females (P<0.01). In contrast to effects on plasma lipids, hepatic cholesterol and TAG were 50% lower in the TEST groups (P<0.01) compared to controls. Low density lipoproteins (LDL) from guinea pigs fed the TEST diet had a lower number of cholesteryl ester (CE) molecules and a smaller diameter than LDL from controls. Atherosclerotic lesions were modulated by both diet (P<0.0001) and sex (P<0.0001). Guinea pigs fed the TEST diet had 25% less lesion extension whereas males had 20% larger occlusion of the arteries compared to both female and ovariectomized guinea pigs. Significant positive correlations were found between LDL CE and atherosclerotic lesions (r=0.495, P<0.05) and LDL size and fatty streak area (r=0.56, P<0.01). In addition, females fed the TEST diet had the lowest plasma and hepatic cholesterol concentrations, the smallest LDL particles, and the least atherosclerosis involvement compared to the other groups. These data indicate that dietary factors and sex/hormonal status play a role in determining plasma lipids and atherosclerosis in guinea pigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA:

analysis of variance

apo:

apolipoprotein

CE:

cholesteryl ester

CHD:

coronary heart disease

FC:

free cholesterol

LSD:

least significant differences

LDL:

low density lipoproteins

PL:

phospholipids

TC:

total cholesterol

TAG:

triacylglycerol

VLDL:

very low density lipoproteins

References

  1. Stamler, J., Wentforth, D., and Neaton, J.D. (1986) Is Relationship Between Serum Cholesterol and Risk of Premature Death from Coronary Heart Disease Continuous and Graded? Findings in 356,222 Primary Screens of the Multiple Risk Factor Intervention Trial (MR-FIT), J. Am. Med. Assoc. 256, 2823–2828.

    Article  CAS  Google Scholar 

  2. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (1994) Circulation, 89, 1329–1345.

    Google Scholar 

  3. Castelli, W.P. (1988) Cholesterol and Lipids in the Risk of Coronary Heart Disease. The Framingham Heart Study, Can. J. Cardiol. 4, 5A-10A.

    PubMed  Google Scholar 

  4. Bonithon-Kopp, C., Scarabin, P.-Y., Darne, B., Malmejac, A., and Guize, L. (1990) Menopause-Related Changes in Lipoproteins and Some Other Cardiovascular Risk Factors, Int. J. Epidemiol. 19, 42–48.

    PubMed  CAS  Google Scholar 

  5. Beaglehole, R. (1990) International Trends in Coronary Heart Disease Mortality, Morbidity, and Risk Factors, Epidemiol. Rev. 12, 1–15.

    PubMed  CAS  Google Scholar 

  6. Anthony, M.S., Clarkson, T.B., Bullock, B.C., and Wagner, J.D. (1997) Soy Protein Versus Soy Phytoestrogens in the Prevention of Diet-Induced Coronary Artery Atherosclerosis of Male Cynomolgus Monkeys, Arterioscler. Thromb. Vasc. Biol. 17, 2524–2531.

    PubMed  CAS  Google Scholar 

  7. Kritchevsky, D. (1993) Dietary Protein and Experimental Atherosclerosis, Ann. NY Acad. Sci. 676, 180–187.

    PubMed  CAS  Google Scholar 

  8. Huff, M.W., and Carroll, K.K. (1982) Long-Term Effects of Semipurified Diets Containing Casein or Soy Protein Isolate on Atherosclerosis and Plasma Lipoproteins in Rabbits, Atherosclerosis 41, 327–336.

    Article  PubMed  CAS  Google Scholar 

  9. Greaves, K.A., Parks, J.S., Williams, K.J., and Wagner, J.D. (1999) Intact Dietary Soy Protein, but Not Adding an Isoflavone Rich Soy Extract to Casein, Improves Plasma Lipids in Ovariectomized Cynomolgus Monkeys, J. Nutr. 129, 1585–1592.

    PubMed  CAS  Google Scholar 

  10. Khosla, P., Samman, S., Carroll, K.K., and Huff, M.W. (1989) Turnover of 125I-VLDL and 131I-LDL Apolipoprotein B in Rabbits Fed Diets Containing Casein or Soy Protein, Biochim. Biophys. Acta 1002, 157–163.

    PubMed  CAS  Google Scholar 

  11. Fernandez, M.L. (1995) Distinct Mechanisms of Plasma LDL Lowering by Dietary Fiber in the Guinea Pig: Specific Effects of Pectin, Guar Gum, and Psyllium, J. Lipid Res. 36, 2394–2404.

    PubMed  CAS  Google Scholar 

  12. Vergara-Jimenez, M., Conde, K., Erickson, S.K., and Fernandez, M.L. (1998) Hypolipidemic Mechanisms of Pectin and Psyllium in Guinea Pigs Fed High Fat-Sucrose Diets: Alterations on Hepatic Cholesterol Metabolism, J. Lipid Res. 39, 1455–1465

    PubMed  CAS  Google Scholar 

  13. Anderson, J.W., Allgood, L.D., Lawrence, A., Altringer, L.A., Jerdack, G.R., Hengehold, D.A., and Morel, J.G. (2000) Cholesterol Lowering Effects of Psyllium Intake Adjunctive to Diet Therapy in Men and Women with Hypercholesterolemia: Meta-Analysis of 8 Controlled Trials, Am. J. Clin. Nutr. 71, 472–479.

    PubMed  CAS  Google Scholar 

  14. Shen, H., He, L., Price, R.L., and Fernandez, M.L. (1998) Dietary Soluble Fiber Lowers Plasma LDL Cholesterol Concentrations by Altering Lipoprotein Metabolism in Female Guinea Pigs, J. Nutr. 128, 1434–1441.

    PubMed  CAS  Google Scholar 

  15. Terpstra, A.H.M., Lapre, J.A., deVries, H.T., and Beynen, A.C. (1998) Dietary Pectin with High Viscosity Lowers Plasma and Liver Cholesterol Concentration and Plasma Cholesteryl Ester Transfer Protein Activity in Hamsters, J. Nutr. 128, 1944–1949.

    PubMed  CAS  Google Scholar 

  16. Wilson, T.A., Behr, S.R., and Nicolosi, R.J. (1998) Addition of Guar Gum and Soy Protein Increases the Efficacy of the American Heart Association Step I Cholesterol Lowering Diet Without Reducing High Density Lipoprotein Cholesterol Levels in Non-human Primates, J. Nutr. 128, 1429–1433.

    PubMed  CAS  Google Scholar 

  17. Fernandez, M.L. (2001) Guinea Pigs as Models for Cholesterol and Lipoprotein Metabolism, J. Nutr. 131, 10–20.

    PubMed  CAS  Google Scholar 

  18. Roy, S., Vega-Lopez, S., and Fernandez, M.L. (2000) Gender and Hormonal Status Affect the Hypolipidemic Mechanisms of Dietary Soluble Fiber in Guinea Pigs, J. Nutr. 130, 600–607.

    PubMed  CAS  Google Scholar 

  19. Lin, E.C.K., Fernandez, M.L., and McNamara, D.J. (1992) Dietary Cholesterol and Fat Quantity Interact to Affect Cholesterol Metabolism in Guinea Pigs, J. Nutr. 120, 1037–1045.

    Google Scholar 

  20. Conde, K., Vergara-Jimenez, M., Krause, B.R., Newton, R.S., and Fernandez, M.L. (1996) Hypocholesterolemic Actions of Atorvastatin Are Associated with Alterations on Hepatic Cholesterol Metabolism and Lipoprotein Composition in the Guinea Pig, J. Lipid Res. 37, 2372–2382.

    PubMed  CAS  Google Scholar 

  21. Allain, C., Poon, L., Chan, C., Richmond, W., and Fu, P. (1974) Enzymatic Determination of Total Serum Cholesterol, Clin. Chem. 20, 470–475.

    PubMed  CAS  Google Scholar 

  22. Carr, T.P., Andersen, C.J., and Rudel, L.L. (1993) Enzymatic Determination of Triacylglycerol, Free Cholesterol and Cholesterol in Tissue Lipid Extracts, Clin. Chem. 26, 39–42.

    CAS  Google Scholar 

  23. Warnick, G.R., Benderson, J., and Albers, J.J. (1982) Dextran-Sulfate-Mg2+ Precipitation Procedure for Quantitation of High Density Lipoprotein Cholesterol, Clin. Chem. 28, 1379–1388.

    PubMed  CAS  Google Scholar 

  24. Fernandez, M.L., Wilson, T.A., Conde, K., Vergara-Jimenez, M., and Nicolosi, R.J. (1999) Hamsters and Guinea Pigs Differ in Their Plasma Lipoprotein Cholesterol Distribution When Fed Diets Varying in Animal Protein, Soluble Fiber, or Cholesterol Content, J. Nutr. 129, 1323–1332.

    PubMed  CAS  Google Scholar 

  25. Bartlett, G.R. (1959) Phosphorus Assay in Column Chromatography, J. Biol. Chem. 234, 466–468.

    PubMed  CAS  Google Scholar 

  26. Markwell, M.A.S., Haas, S.M., Bieber, L.L., and Tolbert, N.E. (1978) A Modification of the Lowry Procedure to Simplify Protein Determination in Membrane and Lipoprotein Samples, Anal. Biochem. 87, 206–210.

    Article  PubMed  CAS  Google Scholar 

  27. Chapman, J.M., Mills, G.L., and Ledford, J.H. (1975) The Distribution and Partial Characterization of the Serum Apolipoproteins in the Guinea Pig, Biochem. J. 149, 423–436.

    PubMed  CAS  Google Scholar 

  28. Fernandez, M.L., Conde, K., Ruiz, L., Montano, C., and McNamara, D.J. (1995) Carbohydrate Type and Amount Alter Intravascular Processing and Catabolism of Plasma Lipoproteins in Guinea Pigs, Lipids 30, 619–626.

    PubMed  CAS  Google Scholar 

  29. Van Heek, M., and Zilversmit, D. (1991) Mechanisms of Hypertriglyceridemia in the Coconut Oil/Cholesterol-Fed Rabbit. Increased Secretion and Decreased Catabolism of VLDL, Arterioscler. Thromb. 11, 918–927.

    PubMed  Google Scholar 

  30. Otto, J., Ordovas, J.M., Smith, D., van Dongen, D., Nicolosi, R.J., and Schaefer, E.J. (1995) Lovastatin Inhibits Diet Induced Atherosclerosis in F1B Golden Syrian Hamsters, Atherosclerosis 114, 19–28.

    Article  PubMed  CAS  Google Scholar 

  31. Nicolosi, R.J., Wilson, T.A., and Krause, B.R. (1998) The ACAT Inhibitor, C1-1011 Is Effective in the Prevention and Regression of Aortic Fatty Streak Area in Hamsters, Atherosclerosis 137, 77–85.

    Article  PubMed  CAS  Google Scholar 

  32. Jokinen, M.P., Clarkson, T.B., and Prichard, R.W. (1985) Recent Advances in Molecular Pathology. Animal Models in Atherosclerosis Research, Exp. Mol. Pathol. 42, 1–28.

    Article  PubMed  CAS  Google Scholar 

  33. Greaves, K.A., Wilson, M.D., Rudel, L.L., Williams, J.K., and Wagner, J.D. (2000) Consumption of Soy Protein Reduces Cholesterol Absorption Compared to Casein Protein Alone or Supplemented with an Isoflavone Extract or Conjugated Equine Estrogen in Ovariectomized Cynomolgus Monkeys, J. Nutr. 130, 820–826.

    PubMed  CAS  Google Scholar 

  34. Fernandez, M.L., Vergara-Jimenez, M., Conde, K., Behr, T., and Abdel-Fattah, G. (1997) Regulation of Apolipoprotein B-Containing Lipoproteins by Dietary Soluble Fiber in Guinea Pigs, Am. J. Clin. Nutr. 65, 814–822.

    PubMed  CAS  Google Scholar 

  35. Ebihara, K., and Schneeman, B.O. (1989) Interactions of Bile Acids, Phospholipids, Cholesterol and Triglycerides with Dietary Fiber in the Small Intestine of Rats, J. Nutr. 119, 1100–1106.

    PubMed  CAS  Google Scholar 

  36. Mamo, J.C.L., Hirano, T., James, L., and Steiner, G. (1991) Partial Characterization of the Sucrose-Induced Defect in Very Low Density Lipoprotein Triglyceride Metabolism, Metabolism 40, 888–893.

    Article  PubMed  CAS  Google Scholar 

  37. Fungwe, T.V., Cagan, L.M., Cook, G.A., Wolcox, H.G., and Heimberg, M. (1993) Dietary Cholesterol Stimulates Hepatic Bio-Synthesis of Triglyceride and Reduces Oxidation of Fatty Acids in the Rat, J. Lipid Res. 34, 933–941.

    PubMed  CAS  Google Scholar 

  38. Judd, P.A., and Truswell, A.S. (1985) The Hypocholesterolemic Effects of Pectins in Rats, Br. J. Nutr. 53, 409–425.

    Article  PubMed  CAS  Google Scholar 

  39. Calleja, L., Paris, M.A., Paul, A., Vilella, E., Joven, J., Jimenez, A., Beltran, G., Uceda, M., Maeda, N., and Osada, J. (1999) Low-Cholesterol and High-Fat Diets Reduce Atherosclerotic Lesion Development in ApoE-Knockout Mice, Arterioscler. Thromb. Vasc. Biol. 19, 2368–2375.

    PubMed  CAS  Google Scholar 

  40. Einarsson, K., Ericksson, S., Ewerth, S., Reihner, E., Rudling, M., Stahlberg, D., and Angelin, B. (1991) Effects of Cholestyramine in Plasma Triglyceride Concentrations in Healthy Normolipidemic Subjects, Am. J. Clin. Nutr. 64, 312–318.

    Google Scholar 

  41. Vega-Lopez, S., Vidal-Quintanar, R.L., and Fernandez, M.L. (2001) Sex and Hormonal Status Affect the Hypolipidemic Mechanisms of Psyllium, Am. J. Clin. Nutr. 74, 435–441.

    PubMed  CAS  Google Scholar 

  42. Nestel, P., Billington, N., Tada, P., Nugent, P., and Fidge, N. (1983) Heterogeneity of Very Low Density Lipoprotein Metabolism in Hyperlipidemic Subjects, Metabolism 32, 810–817.

    Article  PubMed  CAS  Google Scholar 

  43. Dreon, D.M., Fernstrom, H.A., and Miller, B. (1995) Apo E3/E4 Phenotypes Show Greater Decreases in LDL Cholesterol Than Those with E3/E3 or E3/E2 Phenotypes, Arterioscler. Thromb. Vasc. Biol. 15, 105–111.

    PubMed  CAS  Google Scholar 

  44. Marzetta, C.A., Johnson, F.L., Zech, L.A., Foster, D.M., and Rudel, L.L. (1989) Metabolic Behavior of Hepatic VLDL and Plasma LDL ApoB-100 in African Green Monkeys, J. Lipid Res. 30, 357–370.

    PubMed  CAS  Google Scholar 

  45. Campos, H., Genest, J.J., Blijlevens, E., McNamara, J.R., Jenner, J.L., Ordovas, J.M., Wilson, P.W.F., and Schaefer, E.F. (1992) Low Density Lipoprotein Particle Size and Coronary Artery Disease, Arterioscler. Thromb. 12, 187–195.

    PubMed  CAS  Google Scholar 

  46. Krauss, R.M., and Dreon, D.M. (1995) Low Density Lipoprotein Subclasses and Response to a Low-Fat Diet in Healthy Men, Am. J. Clin. Nutr. 62, 478S-487S.

    PubMed  CAS  Google Scholar 

  47. Rudel, L.L., Johnson, F.I., Sawyer, J.K., Wilson, M.S., and Parks, J.S. (1995) Dietary Polyunsaturated Fat Modifies Low Density Lipoproteins and Reduces Atherosclerosis of Nonhuman Primates with High and Low Diet Responsiveness, Am. J. Clin. Nutr. 62, 463S-470S.

    PubMed  CAS  Google Scholar 

  48. Nigon, F., Lesnik, P., Rouis, M., and Chapman, M.J. (1991) Discrete Subspecies of Human Low Density Lipoproteins Are Heterogeneous in Their Interaction with Cellular LDL Receptor, J. Lipid Res. 32, 1741–1753.

    PubMed  CAS  Google Scholar 

  49. Campos, H., Arnold, K.S., Balestra, M.C., Innerarity, T.L., and Krauss, R.M. (1996) Differences in Receptor Binding of LDL Subfractions, Arterioscler. Thromb. Vasc. Biol. 16, 794–801.

    PubMed  CAS  Google Scholar 

  50. Campos, H., Sacks, F.M., Walsh, B.W., Schiff, I.O., Hanesin, M.A., and Krauss, R.M. (1993) Differential Effects of Estrogen on Low Density Lipoproteins Subclasses in Healthy Postmenopausal Women, Metabolism 42, 1153–1158.

    Article  PubMed  CAS  Google Scholar 

  51. Honore, E.K., Williams, J.K., Anthony, M.S., and Clarkson, T.B. (1997) Soy Isoflavones Enhance Coronary Vascular Reactivity in Atherosclerotic Female Macaques, Fertil. Steril. 67, 148–154.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luz Fernandez.

About this article

Cite this article

Cos, E., Ramjiganesh, T., Roy, S. et al. Soluble fiber and soybean protein reduce atherosclerotic lesions in guinea pigs. Sex and hormonal status determine lesion extension. Lipids 36, 1209–1216 (2001). https://doi.org/10.1007/s11745-001-0834-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-001-0834-1

Keywords

Navigation