Lipids

, Volume 36, Issue 9, pp 937–944 | Cite as

Polyunsaturated fatty acids and cerebral function: Focus on monoaminergic neurotransmission

  • Sylvie Chalon
  • Sylvie Vancassel
  • Luc Zimmer
  • Denis Guilloteau
  • Georges Durand
Article

Abstract

More and more reports in recent years have shown that the intake of polyunsaturated fatty acids (PUFA) constitutes an environmental factor able to act on the central nervous system (CNS) function. We recently demonstrated that the effects of PUFA on behavior can be mediated through effects on the monoaminergic neurotransmission processes. Supporting this proposal, we showed that chronic dietary deficiency in α-linolenic acid in rats induces abnormalities in several parameters of the mesocortical and mesolimbic dopaminergic systems. In both systems, the pool of dopamine stored in presynaptic vesicles is strongly decreased. This may be due to a decrease in the number of vesicles. In addition, several other factors of dopaminergic neurotransmission are modified according to the system affected. The mesocortical system seems to be hypofunctional overall [e.g., decreased basal release of dopamine (DA) and reduced levels of dopamine D2 (DAD2) receptors]. In contrast, the mesolimbic system seems to be hyperfunctional overall (e.g., increased basal release of DA and increased levels of DAD2 receptors). These neurochemical changes are in agreement with modifications of behavior already described with this deficiency. The precise mechanisms explaining the effects of PUFA on neurotransmission remain to be clarified. For example, modifications of physical properties of the neuronal membrane, effects on proteins (receptors, transporters) enclosed in the membrane, and effects on gene expression and/or transcription might occur. Whatever the mechanism, it is therefore assumed that interactions exist among PUFA, neurotransmission, and behavior. This might be related to clinical findings. Indeed, deficits in the peripheral amounts of PUFA have been described in subjects suffering from neurological and psychiatric disorders. Involvement of the monoaminergic neurotransmission function has been demonstrated or hypothesized in several of these diseases. It can therefore be proposed that functional links exist among PUFA status, neurotransmission processes, and behavioural disorders in humans. Animal models are tools of choice for the understanding of such links. Improved prevention and complementary treatment of neurological and psychiatric diseases can be expected from these studies.

Abbreviations

AA

arachidonic acid

ADHD

attention deficit/hyperactivity disorder

CNS

central nervous system

DA

dopamine

DAD

dopamine D2

DAT

DA transporters

DHA

docosahexaenoic acid

DnR

dopamine receptor

Dopac

dihydrophenylacetic acid

EFA

essential fatty acids

FA

fatty acid

GABA

γ-aminobutyric acid

HPLC

high-performance liquid chromatography

LC

long chain

PUFA

polyunsaturated fatty acids

VMAT2

vesicular monoamine transporter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bourre, J.-M., Pascal, G., Durand, G., Masson, O., and Piciotti, M. (1984) Alteration in the Fatty Acid Composition of Rat Brain Cells (neurons, astrocytes and oligodendrocytes) and Subcellular Fractions (myelin and synaptosomes) Induced by a Diet Devoid of n−3 Fatty Acids, J. Neurochem. 43, 342–348.PubMedCrossRefGoogle Scholar
  2. 2.
    Galli, C., White, H.B., and Paoletti, R. (1970) Brain Lipid Modifications Induced by Essential Fatty Acid Deficiency in Growing Male and Female Rats, J. Neurochem. 17, 347–355.PubMedCrossRefGoogle Scholar
  3. 3.
    Bourre, J.-M., François, M., Youyou, A., Dumont, O., Piciotti, M., Pascal, G., and Durand, G. (1989) The Effects of Dietary α-Linolenic Acid on the Composition of Nerve Membranes, Enzymatic Activity, Amplitude of Electrophysiological Parameters, Resistance to Poisons and Performance of Learning Task in Rats, J. Nutr. 119, 1880–1892.PubMedGoogle Scholar
  4. 4.
    Yamamoto, N., Saitoh, M., Moriuchi, A., Nomura, M., and Okuyama, H. (1987) Effect of Dietary α-Linolenate/Linoleate Balance on Brain Lipid Compositions and Learning Ability of Rats, J. Lipid Res. 28, 144–151.PubMedGoogle Scholar
  5. 5.
    Yamamoto, N., Hashimoto, A., Takemoto, Y., Okuyama, H., Nomura, M., Kitajima, R., Togashi, T., and Tamai, Y. (1988) Effects of the Dietary Alpha-Linolenate/Linoleate Balance on Lipid Compositions and Learning Ability of Rats. II. Discrimination Process, Extinction Process, and Glycolipid Compositions, J. Lipid Res. 29, 1013–1021.PubMedGoogle Scholar
  6. 6.
    Delion, S., Chalon, S., Hérault, J., Guilloteau, D., Besnard, J.-C., and Durand, G. (1994) Chronic Dietary α-Linolenic Acid Deficiency Alters Dopaminergic and Serotoninergic Neurotransmission in Rats, J. Nutr. 124, 2466–2476.PubMedGoogle Scholar
  7. 7.
    Carrié, I., Clémént, M., De Javel, D., Francès, H., and Bourre, J.-M. (2000) Specific Phospholipid Fatty Acid Composition of Brain Regions in Mice: Effects of n−3 Polyunsaturated Fatty Acid Deficiency and Phospholipid Supplementation, J. Lipid Res. 41, 465–472.PubMedGoogle Scholar
  8. 8.
    Favrelière, S., Barrier, L., Durand, G., Chalon, S., and Tallineau, C. (1998) Chronic Dietary n−3 Polyunsaturated Fatty Acids Deficiency Affects the Fatty Acid Composition of Plasmenylethanolamine and Phosphatidylethanolamine Differently in Rat Frontal Cortex, Striatum, and Cerebellum, Lipids 33, 401–407.PubMedCrossRefGoogle Scholar
  9. 9.
    Wainwright, P.E. (1992) Do Essential Fatty Acids Play a Role in Brain and Behavioral Development? Neurosci. Behav. Rev. 16, 193–205.Google Scholar
  10. 10.
    Francès, H., Monier, C., and Bourre, J.-M. (1995) Effects of Dietary α-Linolenic Acid Deficiency on Neuromuscular and Cognitive Function in Mice, Life Sci. 57, 1935–1947.PubMedCrossRefGoogle Scholar
  11. 11.
    Wainwright, P.E. (1997) Essential Fatty Acids and Behavior, in Handbook of Essential Fatty Acid Biology: Biochemistry, Physiology, and Behavioral Neurobiology, (Yehuda, S., and Mostofsky, D.I., eds.) pp. 299–341, Humana Press, Totowa, NJ.Google Scholar
  12. 12.
    Le Moal, M., and Simon, R. (1991) Mesocorticolimbic Dopaminergic Networks: Functional and Regulatory Roles, Physiol. Rev. 71, 155–234.PubMedGoogle Scholar
  13. 13.
    Deutsch, A.Y., and Cameron, D.S. (1992) Pharmacological Characterization of Dopamine Systems in the Nucleus Accumbens Core and Shell, Neuroscience 46, 49–56.CrossRefGoogle Scholar
  14. 14.
    Le Moal, M. (1995) Mesocorticolimbic Dopaminergic Neurons. Functional and Regulatory Roles, in Psychopharmacologh: The Fourth Generation of Progress, pp. 283–294, Raven Press, New York.Google Scholar
  15. 15.
    Bourre, J.-M., Dumont, O., Pascal, G., and Durand, G. (1993) Dietary α-Linolenic Acid at 1.3 g/kg Maintains Maximal Docosahexaenoic Acid Concentration in Brain, Heart and Liver of Adult Rats, J. Nutr. 123, 1313–1319.PubMedGoogle Scholar
  16. 16.
    Delion, S., Chalon, S., Guilloteau, D., Besnard, J.-C., and Durand, G. (1996) α-Linolenic Acid Dietary Deficiency Alters Age-Related Changes of Dopaminergic and Serotoninergic Neurotransmission in the Rat Frontal Cortex, J. Neurochem. 66, 1582–1591.PubMedCrossRefGoogle Scholar
  17. 17.
    Ungerstedt, U. (1984) Measurement of Neurotransmitter Release by Intracranial Dialysis, in Measurement of Neurotransmitter Release in vivo (Marsden, C.A., ed.), pp. 81–105, Wiley, New York.Google Scholar
  18. 18.
    Di Chiara, G., Tanda, G., and Carboni, E. (1996) Estimation of in-vivo Neurotransmitter Release by Brain Microdialysis: The Issue of Validity, Behav. Pharmacol. 7, 640–657.PubMedCrossRefGoogle Scholar
  19. 19.
    Zimmer, L., Hembert, S., Durand, G., Breton, P., Guilloteau, D., Besnard, J.-C., and Chalon, S. (1998) Chronic n−3 Polyunsaturated Fatty Acid Diet-Deficiency Acts on Dopamine Metabolism in the Rat Frontal Cortex: A Microdialysis Study, Neurosci. Lett. 240, 177–181.PubMedCrossRefGoogle Scholar
  20. 20.
    Zimmer, L., Delion-Vancassel, S., Durand, G., Guilloteau, D., Bodard, S., Besnard, J.-C., and Chalon, S. (2000) Modification of Dopamine Neurotransmission in the Nucleus Accumbens of Rats Deficient in n−3 Polyunsaturated Fatty Acids, J. Lipid Res. 41, 32–40.PubMedGoogle Scholar
  21. 21.
    Zimmer, L., Durand, G., Breton, P., Guilloteau D., Besnard, J.-C., and Chalon, S. (1999). Prominent Role of n−3 Polyunsaturated Fatty Acids in Cortical Dopamine Metabolism, Nutr. Neurosci. 2, 257–265.Google Scholar
  22. 22.
    Zimmer, L., Delpal, S., Guilloteau, D., Aïoun, J., Durand, G., and Chalon, S. (2000) Chronic n−3 Polyunsaturated Fatty Acid Deficiency Alters Dopamine Vesicle Density in the Rat Frontal Cortex, Neurosci. Lett. 284, 25–28.PubMedCrossRefGoogle Scholar
  23. 23.
    King, D., and Finlay, J.M. (1995) Effects of Selective Dopamine Depletion in Medial Prefrontal Cortex on Basal and Evoked Extracellular Dopamine in Neostriatum, Brain Res. 10, 117–128.CrossRefGoogle Scholar
  24. 24.
    King, D., Zigmond, M.J., and Finlay, J.M. (1997) Effects of Dopamine Depletion in the Medial Prefrontal Cortex on the Stress-Induced Increase in Extracellular Dopamine in the Nucleus Accumbens Core and Shell, Neuroscience 77, 141–153.PubMedCrossRefGoogle Scholar
  25. 25.
    Salamone, J.D., Cousins, M.S., McCullough, L.D., Carriero, D.L., and Berkowitz, R.J. (1994) Nucleus Accumbens Dopamine Release Increases During Instrumental Lever Pressing for Food but Not Free Food Consumption, Pharmacol. Biochem. Behav. 49, 25–31.PubMedCrossRefGoogle Scholar
  26. 26.
    Salamone, J.D. (1996) The Behavioral Neurochemistry of Motivation: Methodological and Conceptual Issues in Studies of the Dynamic Activity of Nucleus Accumbens Dopamine, J. Neurosci. Methods 64, 137–149.PubMedCrossRefGoogle Scholar
  27. 27.
    Reisbick, S., and Neuringer, M. (1997) Omega-3 Fatty Acid Deficiency and Behavior: A Critical Review and Directions for Future Research, in Handbook of Essential Fatty Acid Biology: Biochemistry, Physiology, and Behavioral Neurobiology (Yehuda, S., and Mostofsky, D.I., eds.) pp. 397–425, Humana Press, Totowa, NJ.Google Scholar
  28. 28.
    Civelli, O., Bunzow, J.R., Grandy, D.K., Zhou, Q.Y., and Van Tol, H.H. (1991) Molecular Biology of the Dopamine Receptors, Eur. J. Pharmacol. 207, 277–286.PubMedCrossRefGoogle Scholar
  29. 29.
    Vallone, D., Picetti, R., and Borrelli, E. (2000) Structure and Function of Dopamine Receptors, Neurosci. Biobehav. Rev. 24, 125–132.PubMedCrossRefGoogle Scholar
  30. 30.
    Giros, B., Jaber, M., Jones, S.R., Wightman, R.M., and Caron, M.G. (1996) Hyperlocomotion and Indifference to Cocaine and Amphetamine in Mice Lacking the Dopamine Transporter, Nature 379, 606–612.PubMedCrossRefGoogle Scholar
  31. 31.
    Uhl, G.R., Walther, D., Mash, D., Faucheux, B., and Javoy-Agid, F. (1994) Dopamine Transporter Messenger RNA in Parkinson's Disease and Control Substantia Nigra Neurons, Ann. Neurol. 35, 494–498.PubMedCrossRefGoogle Scholar
  32. 32.
    Russell, V., de Villiers, A.S., Sagvolden, T., Lamm, M., and Taljaard, J. (1998) Differences Between Electrically-, Ritalin-and d-Amphetamine-Stimulated Release of [3H]Dopamine from Brain Slices Suggest Impaired Vesicular Storage of Dopamine in an Animal Model of Attention-Deficit Hyperactivity Disorder, Behav. Brain Res. 94, 163–171.PubMedCrossRefGoogle Scholar
  33. 33.
    Spector, A.A. (1989) Polyunsaturated Fatty Acids and Membrane Function, in Biomembrane and Nutrition (Leger, C.L., and Bereziat, G., eds.), Vol. 195, pp. 11–20, Colloque INSERM, Paris.Google Scholar
  34. 34.
    Zérouga, M., Beauge, F., Niel, E., Durand, G., and Bourre, J.-M. (1991) Interactive Effects of Dietary (n−3) Polyunsaturated Fatty Acids and Chronic Ethanol Intoxication on Synaptic Membrane Lipid Composition and Fluidity in Rats, Biochim. Biophys. Acta 1086, 295–304.PubMedGoogle Scholar
  35. 35.
    Suzuki, H., Park, S.J., Tamura, M., and Ando, S. (1998) Effect of the Long-Term Feeding of Dietary Lipids on the Learning Ability, Fatty Acid Composition of Brain Stem Phospholipids and Synaptic Membrane Fluidity in Adult Mice: A Comparison of Sardine Oil Diet with Palm Oil Diet, Mech. Ageing Dev. 101, 119–128.PubMedCrossRefGoogle Scholar
  36. 36.
    Yoshida, S., Yasuda, A., Kawazato, K., Sakai, K., Shimada, T., Takeshita, M., Yuasa, S., Kobayashi, T., Watanabe, S., and Okuyama, H. (1997) Synaptic Vesicle Ultrastructural Changes in the Rat Hippocampus Induced by a Combination of Alpha-Linolenate Deficiency and a Learning Task, J. Neurochem. 68, 1261–1268.PubMedCrossRefGoogle Scholar
  37. 37.
    Murphy, M.G. (1990) Dietary Fatty Acids and Membrane Protein Function, J. Nutr. Biochem. 1, 68–79.PubMedCrossRefGoogle Scholar
  38. 38.
    Sessler, A.A., and Ntambi, J.M. (1998) Polyunsaturated Fatty Acid Regulation of Gene Expression, J. Nutr. 128, 923–926.PubMedGoogle Scholar
  39. 39.
    Raclot, T., and Oudart, H. (1999) Selectivity of Fatty Acids on Lipid Metabolism and Gene Expression, Proc. Nutr. Soc. 58, 633–646.PubMedCrossRefGoogle Scholar
  40. 40.
    Holman, R.T. (1997) ω3 and ω6 Essential Fatty Acid Status in Human Health and Disease, in Handbook of Essential Fatty Acid Biology: Biochemistry, Physiology, and Behavioral Neurobiology, (Yehuda, S., and Mostofsky, D.I., eds.) pp. 139–182, Human Press, Totowa, NJ.Google Scholar
  41. 41.
    Farooqui, A.A., Rosenberger, T.A., and Horrocks, L.A. (1997) Arachidonic Acid, Neurotrauma, and Neurodegenerative Diseases, in Handbook of Essential Fatty Acid Biology: Biochemistry, Physiology, and Behavioral Neurobiology (Yehuda, S., and Mostofsky, D.I., eds.), pp. 277–295, Humana Press, Totowa, NJ.Google Scholar
  42. 42.
    Davis, K.L., Kahn, R.S., Ko, G., and Davidson, M. (1991) Dopamine in Schizophrenia: A Review and Reconceptualization, Am. J. Psychiatry 148, 1474–1486.PubMedGoogle Scholar
  43. 43.
    Moore, H., West, A.R., and Grace, A.A. (1999) The Regulation of Forebrain Dopamine Transmission: Relevance to the Patho-physiology and Psychopathology of Schizophrenia, Biol. Psychiatry 46, 40–55.PubMedCrossRefGoogle Scholar
  44. 44.
    Carlsson, A., Hansson, L.O., Waters, N., and Carlsson, M.L. (1999) A Glutamatergic Deficiency Model of Schizophrenia, Br. J. Psychiatry 174, 2–6.Google Scholar
  45. 45.
    Horrobin, D.F., Manku, M.S., Morse-Fisher, N., Vaddadi, K.S., Courtney, P., Glen, A.I.M., Glen, E., Spellman, M., and Bates, C. (1989) Essential Fatty Acids in Plasma Phospholipids in Schizophrenics, Biol. Psychiatry 25, 562–568.PubMedCrossRefGoogle Scholar
  46. 46.
    Kaiya, H., Horrobin, D.F., Manku, M.S., and Morse-Fisher, N. (1991) Essential and Other Fatty Acids in Schizophrenic Individuals from Japan, Biol. Psychiatry 30, 357–362.PubMedCrossRefGoogle Scholar
  47. 47.
    Glen, A.I.M., Glen, E.M.T., Horrobin, D.F., Vaddadi, K.S., Spellman, M., Morse-Fisher, N., Ells, K., and Shinner, F.S. (1994) A Red Cell Membrane Abnormality in a Subgroup of Schizophrenic Patients: Evidence of Two Diseases, Schizophr. Res. 12, 53–61.PubMedCrossRefGoogle Scholar
  48. 48.
    Peet, M., Laugharne, J.D., Horrobin, D.F., and Reynolds, G.P. (1994) Arachidonic Acid: A Common Link in the Biology of Schizophrenia, Arch. Gen. Psychiatry 51, 665–666.PubMedGoogle Scholar
  49. 49.
    Peet, M., Laugharne, J.D., Rangarajan, N., Horrobin, D., and Reynolds, G. (1995) Depleted Red Cell Membrane Essential Fatty Acids in Drug-Treated Schizophrenic Patients, J. Psychiatr. Res. 29, 227–232.PubMedCrossRefGoogle Scholar
  50. 50.
    Horrobin, D.F., Glen, A.I.M., and Vaddadi, K. (1994) The Membrane Hypothesis of Schizophrenia, Schizophr Res. 13, 195–207.PubMedCrossRefGoogle Scholar
  51. 51.
    Horrobin, D.F. (1997) Fatty Acids, Phospholipids, and Schizophrenia, in Handbook of Essential Fatty Acid Biology: Biochemistry, Physiology, and Behavioral Neurobiology (Yehuda, S., and Mostofsky, D.I., eds.), pp. 245–256, Humana Press, Totowa, NJ.Google Scholar
  52. 52.
    Horrobin D.F. (1998) The Membrane Phospholipid Hypothesis as a Biochemical Basis for the Neurodevelopmental Concept of Schizophrenia, Schizophr Res. 30, 193–208.PubMedCrossRefGoogle Scholar
  53. 53.
    Mellor, J., Laugharne, J.D., and Peet, M. (1995) Schizophrenic Symptom and Dietary Intake of n−3 Fatty, Acids, Schizophr. Res. 18, 85–86.PubMedCrossRefGoogle Scholar
  54. 54.
    Peet, M., Laugharne, J.D., Mellor, J., and Ramchand, C.N. (1996) Essential Fatty Acid Deficiency in Erythrocyte Membranes from Chronic Schizophrenic Patients, and the Clinical Effects of Dietary Supplementation, Prostaglandins Leukot. Essent. Fatty Acids 55, 71–75.PubMedCrossRefGoogle Scholar
  55. 55.
    Fenton, W.S., Hibbeln, J., and Knable, M. (2000) Essential Fatty Acids, Lipid Membrane Abnormalities, and the Diagnosis and Treatment of Schizophrenia, Biol. Psychiatry 47, 8–21.PubMedCrossRefGoogle Scholar
  56. 56.
    Meltzer, H.Y. (1990) Role of Serotonin in Depression, Ann. NY Acad. Sci. 600, 486–499.PubMedGoogle Scholar
  57. 57.
    Hibbeln, J.R., and Salem, N. (1995) Dietary Polyunsaturated Fatty Acids and Depression: When Cholesterol Does Not Satisfy, Am. J. Clin. Nutr. 62, 1–9.PubMedGoogle Scholar
  58. 58.
    Adams, P.B., Lawson, S., Sanigorski, A., and Sinclair, A.J. (1996) Arachidonic Acid to Eicosapentaenoic Acid Ratio in Blood Correlates Positively with Clinical Symptoms of Depression, Lipids 31, S157-S161.PubMedGoogle Scholar
  59. 59.
    Peet, M., Murphy, B., Shay, J., and Horrobin, D.F. (1998) Depletion of Omega-3 Fatty Acid Levels in Red Blood Cell Membranes of Depressive Patients, Biol. Psychiatry 43, 315–319.PubMedCrossRefGoogle Scholar
  60. 60.
    Edwards, R., Peet, M., Shay, J., and Horrobin, D.F. (1998) Omega-3 Polyunsaturated Fatty Acid Levels in the Diet and in Red Blood Cell Membranes of Depressed Patients, J. Affect. Disord. 48, 149–155.PubMedCrossRefGoogle Scholar
  61. 61.
    Maes, M., Christophe, A., Delanghe, J., Altamura, C., Neels, H., and Meltzer, H.Y. (1999) Lovered Omega 3 Polyunsaturated Fatty Acids in Serum Phospholipids and Cholesteryl Esters of Depressed Patients, Psychiatry Res. 85, 275–291.PubMedCrossRefGoogle Scholar
  62. 62.
    Castellanos, F.X. (1997) Toward a Pathophysiology of Attention-Deficit/Hyperactivity Disorder, Clin. Pediatr. 36, 381–393.Google Scholar
  63. 63.
    Dougherty, D.D., Bonab, A.A., Spencer, T.J., Rauch, S.L., Madras, B.K., and Fischman, A.J. (1999) Dopamine Transporter Density in Patients with Attention Deficit Hyperactivity Disorder, Lancet 354, 2132–2133.PubMedCrossRefGoogle Scholar
  64. 64.
    Swanson, J.M., Flodman, P., Kennedy, J., Spence, M.A., Moyzis, R., Schuck, S., Murias, M., Moriarity, J., Barr, C., Smith, M., and Posner, M. (2000) Dopamine Genes and ADHD, Neurosci. Biobehav. Res. 24, 21–25.CrossRefGoogle Scholar
  65. 65.
    Krause, K.-H., Dresel, S.H., Krause, J., Kung, H.F., and Tatsch K. (2000) Increased Striatal Dopamine Transporter in Adult Patients with Attention Deficit Hyperactivity Disorder: Effects of Methylphenidate as Measured by Single Photon Emission Computed Tomography, Neurosci. Lett. 285, 107–110.PubMedCrossRefGoogle Scholar
  66. 66.
    Mitchell, E.A., Aman, M.G., Turbott, S.H., and Manku, M. (1987) Clinical Characteristics and Serum Essential Fatty Acid Levels in Hyperactive Children, Clin. Pediatr. 26, 406–411.Google Scholar
  67. 67.
    Stevens, L.J., Zentall, S.S., Deck, J.L., Abate, M.L., Watkins, B.A., Lipp, S.R., and Burgess, J.R. (1995) Essential Fatty Acid Metabolism in Boys with Attention-Deficit Hyperactivity Disorder, Am. J. Clin. Nutr. 62, 761–768.PubMedGoogle Scholar
  68. 68.
    Stevens, L.J., Zentall, S.S., Abate, M.L., Kuczek, T., and Burgess, J.R. (1996) Omega-3 Fatty Acid in Boys with Behavior, Learning, and Health Problems, Physiol. Behav. 59, 915–920.PubMedCrossRefGoogle Scholar
  69. 69.
    Burgess, J.R., Stevens, L., Zhang, W., and Peck L. (2000) Long-Chain Polyunsaturated Fatty Acids in Children with Attention-Deficit Hyperactivity Disorder, Am. J. Clin. Nutr. 71 (Suppl.), 327S-330S.PubMedGoogle Scholar
  70. 70.
    Söderberg, M., Edlund, C., Alafuzoff, I., Kristensson, K., and Dallner, G. (1992) Lipid Composition in Different Regions of the Brain in Alzheimers Disease/Senile Dementia of Alzheimer's Type, J. Neurochem. 59, 1646–1653.PubMedCrossRefGoogle Scholar
  71. 71.
    Prasad, M.R., Lovell, M.A., Yatin, M., Dhillon, H., and Markesbery, W.R. (1998) Regional Membrane Phospholipids Alterations in Alzheimer's Disease, Neurochem. Res. 23, 81–88.PubMedCrossRefGoogle Scholar
  72. 72.
    Horrobin, D.F., Manku, M.S., Hillman, H., Iain, A., and Glen, M. (1991) Fatty Acid Levels in the Brain of Schizophrenics and Normal Controls, Biol. Psychiatry 30, 795–805.PubMedCrossRefGoogle Scholar
  73. 73.
    Yao, J.K., Leonard, S., and Reddy, R.D. (2000) Membrane Phospholipids Abnormalities in Postmortem Brains from Schizophrenic Patients, Schizophr. Res. 42, 7–17.PubMedCrossRefGoogle Scholar
  74. 74.
    Bourre, J.-M., Bonneil, M., Dumont, O., Piciotti, M., Nalbone, G., and Lafont H. (1988) High Dietary Fish Oil Alters the Brain Polyunsaturated Fatty Acid Composition, Biochim. Biophys. Acta 960, 458–461.PubMedGoogle Scholar
  75. 75.
    Bourre, J.-M., François, M., Youyou, A., Dumont, O., Piciotti, M., Pascal, G., and Durand, G. (1990) Effect of Increasing Amounts of Dietary Fish Oil on Brain and Liver Fatty Acid Coposition, Biochim. Biophys. Acta 1043, 149–152.PubMedGoogle Scholar
  76. 76.
    Yonekubo, A., Honda, S., Okano, M., Takahashi, K., and Yamamoto, Y. (1994) Effects of Dietary Fish Oil During the Fetal and Postnatal Periods on the Learning Ability of Postnatal Rats, Biosci. Biotechnol. Biochem. 58, 799–801.CrossRefGoogle Scholar
  77. 77.
    Jensen, M.M., Slarsfeldt T., and Høy, C.-E. (1996) Correlation Between Level of (n−3) Polyunsaturated Fatty Acids in Brain Phospholipids and Learning Ability in Rats. A Multiple Generation Study, Biochim. Biophys. Acta 1300, 203–209.PubMedGoogle Scholar
  78. 78.
    Okaniwa, Y., Yuasa, S., Yamamoto, N., Watanabe, S., Kobayashi, T., Okuyama, H., Nomura, M., and Nagata, Y. (1996) A High Linoleate and a High α-Linolenate Diet Induced Changes in Learning Behavior of Rats. Effects of a Shift in Diets and Reversal of Training Stimuli, Biol. Pharm. Bull. 19, 536–540.PubMedGoogle Scholar
  79. 79.
    Chalon, S., Delion-Vancassel, S., Belzung, C., Guilloteau, D., Leguisquet, A.-M., Besnard J.-C., and Durand, G. (1998) Dietary Fish Oil Induces Changes in Monoaminergic Neurotransmission and Behavior in Rats, J. Nutr. 128, 2512–2519.PubMedGoogle Scholar
  80. 80.
    Yehuda, S., and Carasso, R.L. (1993) Modulation of Learning, Pain Thresholds, and Thermoregulation in the Rat by Preparations of Free Purified α-Linolenic and Linoleic Acids: Determination of the Optimal ω3-to-ω6 Ratio, Proc. Natl. Acad. Sci. USA 90, 10345–10349.PubMedCrossRefGoogle Scholar
  81. 81.
    Youyou, A., Durand, G., Pascal, G., Piciotti, M., Dumont, O., and Bourre, J.-M. (1986) Recovery of Altered Fatty Acid Composition Induced by a Diet Devoid of n−3 Fatty Acids in Myelin, Synaptosomes, Mitochondria, and Microsomes of Developing Rat Brain, J. Neurochem 46, 224–228.PubMedGoogle Scholar
  82. 82.
    Carrié, I., Clémént, M., De Javel, D., Francès, H., and Bourre, J.-M. (2000) Phospholipid Supplementation Reverses Behavioral and Biochemical Alterations Induced by n−3 Polyunsaturated Fatty Acid Deficiency in Mice, J. Lipid Res. 41, 473–480.PubMedGoogle Scholar
  83. 83.
    Hamano, H., Nabekura, J., Nishikawa, M., and Ogawa, T. (1996) Docosahexaenoic Acid Reduces GABA Response in Substantia Nigra Neuron of Rat, J. Neurophysiol. 75, 1264–1270.PubMedGoogle Scholar
  84. 84.
    Minami M., Kimura, S., Endo, T., Hamaue, N., Hirafuji, M., Togashi, H., Matsumoto, M., Yoshioka, M., Saito, H., Watanabe, S., Kobayashi, T., and Okuyama, H. (1997) Dietary Docosahexaenoic Acid Increases Cerebral Acetylcholine Levels and Improves Passive Avoidance Performance in Stroke-Prone Spontaneously Hypertensive Rats, Pharmacol. Biochem. Behav. 58, 1123–1129.PubMedCrossRefGoogle Scholar
  85. 85.
    Yehuda, S., Rabinovitz, S., Carasso, R.L., and Mostofsky, D.I. (1997) Fatty Acids and Brain Peptides, Peptides 19, 407–419.CrossRefGoogle Scholar

Copyright information

© AOCS Press 2001

Authors and Affiliations

  • Sylvie Chalon
    • 1
  • Sylvie Vancassel
    • 2
  • Luc Zimmer
    • 1
  • Denis Guilloteau
    • 1
  • Georges Durand
    • 2
  1. 1.INSERM U316, Laboratoire de Biophysique Médicale et PharmaceutiqueUFR PharmacieToursFrance
  2. 2.Laboratoire Nutrition et Sécurité AlimentaireINRAJouy-en-JosasFrance

Personalised recommendations