Skip to main content
Log in

Determination of stereochemical configuration of the glycerol moieties in glycoglycerolipids by chiral phase high-performance liquid chromatography

  • Methods
  • Published:
Lipids

Abstract

This study reports a simple and sensitive method for determining the absolute configuration of the glycerol moieties in glycoglycerolipids. The method is based on chiral phase high-performance liquid chromatography (HPLC) separations of enantiomeric di- and monoacylglycerols released from glycosyldi- and monoacylglycerols, respectively, by periodate oxidation followed by hydrazinolysis. The released di- and monoacylglycerols were chromatographed as their 3,5-dinitrophenylurethane (3,5-DNPU), and bis(3,5-DNPU) derivatives, respectively. The derivatives were separated on two chiral phases of opposite configuration, (R)-and (S)-1-(1-naphthyl)ethylamine polymers for diacylglycerols and N-(R)-1-(1-naphthyl)ethylaminocarbonyl-(S)-valine and N-(S)-1-(1-naphyl)ethylamino-carbonyl-(R)-valine for monoacylglycerols. Clear enantiomer separations, which permit the assignment of the glycerol configuration, were achieved for sn-1,2(2,3)-dicyl- and sn-1(3)-monoacylglycerols generated from linseed oil triacylglycerols by partial Grignard degradation on all the chiral stationary phases employed. Using the method, we have determined the glycerol configuration in the glycosyl-diacylglycerols (monogalactosyl-, digalactosyl-, and sulfquinovo-syldiacylglycerols) and glycosylmonoacylglycerols (monogalactosyl-, digalactosyl-, and sulfoquinovosylmonoacylglycerols) isolated from spinach leaves and the coralline red alga Corallina pilulifera. The results clearly showed that the glycerol moieties in all the glycoglycerolipids examined have S-configuration sn-1,2-diacyl- and sn-1-monoacylglycerols). The new method demonstrates that chiral phase HPLC provides unambiguous information on the configuration of the glycerol backbone in natural glycosyldi- and monoacylglycerols, and that the two-step liberation of the free acylglycerols does not compromise glycerol chirality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DGDG:

digalactosyldiacylglycerol

DGMG:

digalactosyl-monoacylglycerol

DNPU:

dinitrophenylurethane

ECN:

equivalent carbon number

ESI:

electrospray ionization

HPLC:

high-performance liquid chromatography

MGDG:

monogalactosyldiacylglycerol

MGMG:

monogalactosylmonoacylglycerol

MS:

mass spectrometry

NMR:

nuclear magnetic resonance

SQDG:

sulfoquinovosyldiacylglycerol

SQMG:

sulfoquinovosyl-monoacylglycerol

TLC:

thin-layer chromatography

References

  1. Ishizuka, I., and Yamakawa, T. (1985) Glycoglycerolipids, New Compr. Biochem. 10, 101–197.

    Article  CAS  Google Scholar 

  2. Kates, M. (1990) Glycolipids of Higher Plants, Algae, Yeasts, and Fungi, in Glyco-, Phosphoglyco-, and Sulphoglycoglycerolipids of Bacteria, Handbook of Lipid Research 6 (Kates, M., ed.), pp. 235–320, Plenum Press, New York.

    Google Scholar 

  3. Heinz, E. (1996) Plant Glycerolipids: Structure, Isolation and Analysis, in Advances in Lipid Methodology—Three (Christie, W.W., ed.) pp. 211–332, The Oily Press, Dundee.

    Google Scholar 

  4. Kikuchi, H., Tsukitani, Y., Manda, T., Fujii, T., Nakanishi, H., Kobayashi, M., and Kitagawa, I. (1982) Marine Natural Products. X. Pharmacologically Active Glycolipids from the Okinawan Marine Sponge Phyllospongia foliascens, Chem. Pharm. Bull. 30, 3544–3547.

    CAS  Google Scholar 

  5. Gustafson, K.R., Cardellina, J.H., II., Fuller, R.W., Weislow, O.S., Kiser, R.F., Snader, K.M., Patterson, G.M.L., and Boyd, M.R. (1989) AIDS-Antiviral Sulfolipids from Cyanobacteria (blue-green algae), J. Natl. Cancer Inst. 81, 1254–1258.

    PubMed  CAS  Google Scholar 

  6. Katsuoka, M., Ogura, C., Etoh, H., Sakata, K., and Ina, K. (1990) Galactosyl- and Sulfoquinovosyl-Diacylglycerols Isolated from the Brown Algae, Undaria pinnatifida and Costaria costata as Repellents of the Blue Mussel, Mytilus edulis, Agric. Biol. Chem. 54, 3043–3044.

    CAS  Google Scholar 

  7. Sakata, K., Kato, K., Iwase, Y., Okada, H., Ina, K., and Machiguchi, Y. (1991) Feeding-Stimulant Activity of Algal Glycerolipids for Marine Herbivorous Gastropods, J. Chem. Ecol. 17, 185–193.

    Article  CAS  Google Scholar 

  8. Tsukamoto, S., Hirota, H., Kato, H., and Fusetani, N. (1994) Phlorotannins and Sulfoquinovosyl Diacylglycerols: Promoters of Larval Metamorphosis in Ascidians, Isolated from the Brown Alga Sargassum thunbergii, Fish. Sci. 60, 319–321.

    CAS  Google Scholar 

  9. Morimoto, T., Nagatsu, A., Murakami, N., Sakakibara, J., Tokuda, H., Nishino, H., and Iwashima, A. (1995) Anti-Tumour-Promoting Glyceroglycolipids from the Green Alga, Chlorella vulgaris, Phytochemistry 40, 1433–1437.

    Article  PubMed  CAS  Google Scholar 

  10. Rho, M.-C., Matsunaga, K., Yasuda, K., and Ohizumi, Y. (1996) A Novel Inhibitor of Platelet Aggregation from the Cyanophyceae Oscillatoria rosea (NIES-208), Planta Med. 62, 473–474.

    PubMed  CAS  Google Scholar 

  11. Sahara, H., Ishikawa, M., Takahashi, N., Ohtani, S., Sato, N., Gasa, S., Akino, T., and Kikuchi, K. (1997) In vivo Anti-tumor Effect of 3′-Sulphonoquinovosyl 1′-Monoacylglyceride Isolated from Sea Urchin (Strongylocentrotus intermedius) Intestine, Br. J. Cancer 75, 324–332.

    PubMed  CAS  Google Scholar 

  12. Takahashi, Y. (1999) Study on Allelochemicals from Coralline Red Algae in Isoyake Areas, Ph.D. Thesis, Hokkaido University, Sapporo, Japan, pp. 1–107.

    Google Scholar 

  13. Linscheid, M., Diehl, B.W.K., Övermöhle, M., Riedl, I., and Heinz, E. (1997) Membrane Lipids of Rhodopseudomonas viridis, Biochim. Biophys. Acta 1347, 151–163.

    PubMed  CAS  Google Scholar 

  14. Kim, J.-H., Nishida, Y., Ohrui, H., and Meguro, H. (1995) A Highly Sensitive HPLC Method to Determine the Absolute Configuration of Glycosyl Diacylglycerols Using a Fluroescent Chiral Derivatizing Reagent, J. Carbohydr. Chem. 14, 889–893.

    CAS  Google Scholar 

  15. Takagi, T. (1990) Chromatographic Resolution of Chiral Lipid Derivatives, Prog. Lipid Res. 29, 277–298.

    PubMed  CAS  Google Scholar 

  16. Christie, W.W. (1992) The Chromatographic Resolution of Chiral Lipids, in Advances in Lipid Methodology—One (Christie, W.W., ed.), pp. 121–148, The Oily Press, Ayr.

    Google Scholar 

  17. Kuksis, A. (1996) Analysis of Positional Isomers of Glycerolipids by Non-enzymatic Methods, in Advances in Lipid Methodology—Three (Christie W.W., ed.), pp. 1–36, The Oily Press, Dundee.

    Google Scholar 

  18. Bligh, E.G., and Dyer, W.J. (1959) A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  19. Svennerholm, L. (1956) The Quantitative Estimation of Cerebrosides in Nervous Tissue, J. Neurochem. 1, 42–53.

    PubMed  CAS  Google Scholar 

  20. Heinze, F.J., Linscheid, M., and Heinz, E. (1984) Release of Diacylglycerol Moieties from Various Glycosyl Diacylglycerols, Anal. Biochem. 139, 126–133.

    Article  PubMed  CAS  Google Scholar 

  21. Itabashi, Y., and Takagi, T. (1986) High-Performance Liquid Chromatographic Separation of Monoacylglycerol Enantiomers on a Chiral Stationary Phase, Lipids 21, 413–416.

    CAS  Google Scholar 

  22. Itabashi, Y., Kuksis, A., Marai, L., and Takagi, T. (1990) HPLC Resolution of Diacylglycerol Moieties of Natural Triacylglycerols on a Chiral Phase Consisting of Bonded (R)-(+)-1-(1-Naphthyl)ethylamine, J. Lipid Res. 31, 1711–1717.

    PubMed  CAS  Google Scholar 

  23. Takagi, T., and Ando, Y. (1990) Enatiomer Separation of Mixture of Monoacylglycerol Derivatives by HPLC on a Chiral Column, Lipids 25, 398–400.

    CAS  Google Scholar 

  24. Myher, J.J., and Kuksis, A. (1979) Stereospecific Analysis of Triacylglycerols via Racemic Phosphatidylcholines and Phospholipase C, Can. J. Biochem. 57, 117–124.

    Article  PubMed  CAS  Google Scholar 

  25. Fischer, W., Heinz, E., and Zeus, M. (1973) The Suitability of Lipase from Rhizopus arrhizus delemar for Analysis of Fatty Acid Distribution in Dihexosyl Diglycerides, Phospholipids and Plant Sulfolipids, Hoppe-Seyler's Z. Physiol. Chem. 354, 1115–1123.

    PubMed  CAS  Google Scholar 

  26. Itabashi, Y., and Takagi, T. (1980) Glass Capillary Gas Chromatography of Fatty Acids from Lipids of Marine Organisms, Yukagaku 29, 855–865.

    CAS  Google Scholar 

  27. Suzuki, T., Ota, T., and Takagi, T. (1992) Temperature Effect on Enantiomeric Separation of Diacylglycerol Derivatives by HPLC on Various Chiral Columns, J. Chromatogr. Sci. 30, 315–318.

    CAS  Google Scholar 

  28. Yamauchi, R., Kojima, M., Isogai, M., Kato, K., and Ueno, Y. (1982) Separation and Purification of Molecular Species of Galactolipids by High-Performance Liquid Chromatography, Agric. Biol. Chem. 46, 2847–2849.

    CAS  Google Scholar 

  29. Itabashi, Y., Myher, J.J., and Kuksis, A. (2000) High-Performance Liquid Chromatographic Resolution of 1,2-Diacyl-rac-glycerols as 3,5-Dinitrophenylurethanes, J. Chromatogr. A 893, 261–279.

    Article  PubMed  CAS  Google Scholar 

  30. Araki, S., Sakurai, T., Kawaguti, A., and Murata, N. (1987) Positional Distribution of Fatty Acids in Glycerolipids of the Marine Red Alga, Porphyra yezoensis, Plant Cell Physiol. 28, 761–766.

    CAS  Google Scholar 

  31. Suzuki, M., Wakana, I., Denboh, T., and Tatewaki, M. (1996) An Allelopathic Polyunsaturated Fatty Acid from Red Algae, Phytochemistry 43, 63–65.

    Article  Google Scholar 

  32. Cho, S.H., and Thompson, G.A., Jr. (1986) Properties of a Fatty Acyl Hydrolase Preferentially Attacking Monogalactosyldiacylglycerols in Dunaliella salina Chloroplasts, Biochim. Biophys. Acta 878, 353–359.

    CAS  Google Scholar 

  33. Hirayama, O., Matsuda, H., Takeda, H., Maenaka, K., and Takatsuka, H. (1975) Purification and Properties of a Lipid Acyl-Hydrolase from Potato Tubers, Biochim. Biophys. Acta 384, 127–137.

    PubMed  CAS  Google Scholar 

  34. Sastry, P.S., and Kates, M. (1964) Hydrolysis of Monogalactosyl and Digalactosyl Diglycerides by Specific Enzymes in Runner-Bean Leaves, Biochemistry 3, 1280–1287.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Itabashi.

About this article

Cite this article

Takahashi, Y., Itabashi, Y., Suzuki, M. et al. Determination of stereochemical configuration of the glycerol moieties in glycoglycerolipids by chiral phase high-performance liquid chromatography. Lipids 36, 741–748 (2001). https://doi.org/10.1007/s11745-001-0780-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-001-0780-y

Keywords

Navigation