Skip to main content
Log in

Metabolism of an oxysterol, 7-ketocholesterol, by sterol 27-hydroxylase in hepG2 cells

  • Articles
  • Published:
Lipids

Abstract

7-Ketocholesterol (7K) is a quantitatively important oxysterol in both atherosclerotic lesions and macrophage foam cells. We reported recently that radiolabeled 7K delivered to rodents in a modified lipoprotein or chylomicron remnantlike emulsion, both cleared predominantly by the liver, was rapidly excreted into the intestine as water-soluble products, presumably bile acids. Herein, we aimed to elucidate the early or initial reactions in 7K metabolism. The hypothesis was tested that sterol 27-hydroxylase, a mitochondrial cytochrome P450 and the first enzyme of the acidic bile acid pathway, is responsible for the initial metabolism of 7K by HepG2 cells, a human hepatoblastoma cell-line. The 27-hydroxylated product of 7K (27OH-7K) was shown to be the initial, lipid-soluble product of 7K metabolism. It was produced in mitochondrial incubations and whole cells and was readily released into the media from cells. Intact cells generated metabolites of 7K that had undergone conversion from lipid-soluble precusors to water-soluble products rapidly and extensively. Their production was ablated with cyclosporin A, a sterol 27-hydroxylase inhibitor. Furthermore, we demonstrated the effectiveness of two novel selective inhibitors of this enzyme, GW273297X and GI268267X. These inhibitors also ablated the production of water-soluble products by cells; and the inhibitor of choice, GW273297X, decreased the production of 27OH-7K in mitochondrial preparations. This is the first study to demonstrate that sterol 27-hydroxylase plays an important role in the metabolism of oxysterols such as 7K in liver cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BTSFA plus 1% TMCS:

N,O-bis(trimethylsilyl)trifluoroacetamide with 1% trimethylchlorosilane

CsA:

cyclosporin A

DMEM:

Dulbecco's modified Eagle's medium

GC-MS:

gas chromatography-mass spectrometry

HPLC:

high-performance liquid chromatography

IC50 :

concentration level at which an enzyme's activity is inhibited by 50%

7K:

7-ketocholesterol (cholest-5-en-3β-ol-7-one)

LDL:

low-density lipoprotein

7βOH:

7β-hydroxycholesterol (cholest-5-en-3β, 7β-diol)

19OH:

19-hydroxycholesterol (cholest-5-en-3β-19-diol)

27OH:

27-hydroxycholesterol [(25R)-cholest-5-en-3β, 26-diol]

27OH-7K:

27-hydroxy-7-ketocholesterol [(25R)-cholest-5-en-3β 26-diol-7-one]

PBS:

Dulbecco's phosphate buffered saline

TMS:

trimethylsilyl

TMSOH:

trimethylsilylhydroxide

UV:

ultraviolet

References

  1. Mattsson-Hultén, L., Lindmark, H., Diczfalusy, U., Björkhem, I., Ottosson, M., Liu, Y., Bondjers, G., and Wiklund, O. (1996) Oxysterols Present in Atherosclerotic Tissue Decreases the Expression of Lipoprotein Lipase Messenger RNA in Human Monocyte-Derived Macrophages, J. Clin. Invest. 97, 461–468.

    Google Scholar 

  2. Brown, A.J., and Jessup, W. (1999) Oxysterols and Atherosclerosis, Atherosclerosis 142, 1–28.

    Article  PubMed  CAS  Google Scholar 

  3. Smith, L. (1996) Review of Progress in Sterol Oxidations: 1987–1995, Lipids 31, 453–487.

    Article  PubMed  CAS  Google Scholar 

  4. Lyons, M.A., and Brown, A.J. (1999) Molecules in Focus: 7-Ketocholesterol, Int. J. Biochem. Cell Biol. 31, 369–375.

    Article  PubMed  CAS  Google Scholar 

  5. Hodis, H.N., Crawford, D.W., and Sevanian, A. (1991) Cholesterol Feeding Increases Plasma and Aortic Tissue Cholesterol Oxide Levels in Parallel: Further Evidence for the Role of Cholesterol Oxidation in Atherosclerosis, Atherosclerosis 89, 117–126.

    Article  PubMed  CAS  Google Scholar 

  6. Smith, L.L., and Johnson, B.H. (1989) Biological Activities of Oxysterols, Free Radicals Biol. Med. 7, 285–332.

    Article  CAS  Google Scholar 

  7. Brown, A.J., Dean, R.T., and Jessup, W. (1996) Free and Esterified Oxysterol: Formation During Copper-Oxidation of Low Density Lipoprotein and Uptake by Macrophages, J. Lipid Res. 37, 320–335.

    PubMed  CAS  Google Scholar 

  8. Brown, A.J., Leong, S.-L., Dean, R.T., and Jessup, W. (1997) 7-Hydroperoxycholesterol and Its Products in Oxidized Low-Density Lipoprotein and Human Atherosclerotic Plaque, J. Lipid Res. 38, 1730–1745.

    PubMed  CAS  Google Scholar 

  9. Guardiola, F., Codony, R., Addis, P.B., Rafecas, M., and Boatella, J. (1996) Biological Effects of Oxysterols Current Status, Food Chem. Toxicol. 34, 193–211.

    Article  PubMed  CAS  Google Scholar 

  10. Nielsen, J.H., Olsen, C.E., Duedahl, C., and Skibsted L.H. (1995) Isolation and Quantification of Cholesterol Oxides in Dairy Products by Selected Ion Monitoring Mass Spectrometry, J. Dairy Res. 62, 101–113.

    Article  PubMed  CAS  Google Scholar 

  11. van de Bovenkamp, P., Kosmeijer-Schuil, T.G., and Katan, M.B. (1988) Quantification of Oxysterols in Dutch Foods: Egg Products and Mixed Diets, Lipids 23, 1079–1085.

    PubMed  Google Scholar 

  12. Angulo, A.J., Romera, J.M., Ramirez, M., and Gil, A. (1997) Determination of Cholesterol Oxides in Dairy Products. Effect of Storage Conditions, J. Agric. Food Chem. 45, 4318–4323.

    Article  CAS  Google Scholar 

  13. Kubow, S. (1993) Lipid Oxidation Products in Food and Atherogenesis, Nutr. Rev. 51, 33–40.

    Article  PubMed  CAS  Google Scholar 

  14. Addis, P.B., and Park, P.S. W. (1992) Cholesterol Oxide Content of Foods, in Biological Effects of Cholesterol Oxides (Peng, S.-K., and Morin, R.J., eds), pp. 71–88, CRC Press, Boca Raton.

    Google Scholar 

  15. Kumar, N., and Singhal, O.P. (1991) Cholesterol Oxides and Atherosclerosis: A Review, J. Sci. Food Agric. 55, 497–510.

    Article  CAS  Google Scholar 

  16. Linseisen, J., and Wolfram, G. (1998) Absorption of Cholesterol Oxidation Products from Ordinary Foodstuff in Humans, Ann. Nutr. Metab. 42, 221–230.

    Article  PubMed  CAS  Google Scholar 

  17. Emanual, H.A., Hassel, C.A., Addis, P.B., Bergmann, S.D., and Zavoral, J.H. (1991) Plasma Cholesterol Oxidation Products (oxysterols) in Human Subjects Fed a Meal Rich in Oxysterols, J. Food. Sci. 56, 843–847.

    Article  Google Scholar 

  18. Vine, D.F., Croft, K.D., Beilin, L.J., and Mamo, J.C. (1997) Absorption of Dietary Cholesterol Oxidation Products and Incoporation into Rat Lymph Chylomicrons, Lipids 32, 887–893.

    Article  PubMed  CAS  Google Scholar 

  19. Osada, K., Sasaki, E., and Sugano, M. (1994) Lymphatic Absorption of Oxidized Cholesterol, Lipids 29, 555–559.

    PubMed  CAS  Google Scholar 

  20. Bascoul, J., Domergue, N., Mourot, J., Dery, G., and Crastes de Paulet, A. (1986) Intestinal Absorption and Fecal Excretion of 5,6α-Epoxy-5α-cholestan-3β-ol by the Male Wistar Rat, Lipids 21, 744–747.

    PubMed  CAS  Google Scholar 

  21. Björkhem, I., Einarsson, K., and Johansson, G. (1963) Formation and Metabolism of 3β-Hydroxycholest-5-en-7-one and Cholest-5-ene-3β,7β-diol, Acta Chem. Scand. 22, 1595–1605.

    Article  Google Scholar 

  22. Erickson, S.A., Cooper, A.D., Matsui, S.M., and Gould R.G. (1977) 7-Ketocholesterol, Its Effects on Hepatic Cholesterogenesis and Its Hepatic Metabolism in Vivo and in Vitro, J. Biol. Chem. 252, 5186–5193.

    PubMed  CAS  Google Scholar 

  23. Sarma, J.S.M., Bing, R.J., Ikeda, S., and Fischer, R. (1976) Metabolic Fate of Ingested and Injected 7-Ketocholesterol in the Rabbit, Artery 2, 153–160.

    CAS  Google Scholar 

  24. Lyons, M.A., Samman, S., Gatto, L., and Brown, A.J. (1999) Rapid Hepatic Metabolism of 7-Ketocholesterol in Vivo: Implications for Dietary Oxysterols, J. Lipid Res. 40, 1846–1857.

    PubMed  CAS  Google Scholar 

  25. Lyons, M.A., and Brown, A.J. (2001) 7-Ketocholesterol Delivered to Mice in Chylomicron Remnant-Like Particles Is Rapidly Metabolised, Excreted, and Does Not Accumulate in Aorta, Biochim. Biophys. Acta 1530, 209–218.

    PubMed  CAS  Google Scholar 

  26. Groot, P.H.E., van Berkel, T.J.C., and van Tol, A. (1981) Relative Contributions of Parenchymal and Non-Parenchymal (sinusoidal) Liver Cells in the Uptake of Chylomicron Remnants, Metabolism 30, 792–797.

    Article  PubMed  CAS  Google Scholar 

  27. Redgrave, T.G. (1983) Formation and Metabolism of Chylomicrons, Int. Rev. Physiol. 28, 103–130.

    PubMed  CAS  Google Scholar 

  28. van Dijk, M.C.M., Pieters, M., and van Berkel, T.J.C. (1993) Kinetics of Biliary Secretion of Chylomicron Remnant Cholesterol (esters) in the Rat, Eur. J. Biochem. 211, 781–787.

    Article  PubMed  Google Scholar 

  29. Björkhem, I. (1992) Mechanism of Degradation of the Steroid Side-Chain in the Formation of Bile Acids, J. Lipid Res. 33, 455–471.

    PubMed  Google Scholar 

  30. Russell, D.W., and Setchell, K.D. (1992) Bile Acid Biosynthesis, Biochemistry 31, 4737–4749.

    Article  PubMed  CAS  Google Scholar 

  31. Vlahcevic, Z.R., Pandak, W.M., and Stavitz, R.T. (1999) Regulation of Bile Acid Biosynthesis, Gastroenterol. Clin. N. Am. 28, 1–25.

    Article  CAS  Google Scholar 

  32. van Cantfort, J. (1972) The in Vitro Formation and the Strong Inhibitory Action of 7-Keto-cholesterol on Cholesterol 7α-Hydroxylase Activity, Life Sci. 11, 773–780.

    Article  Google Scholar 

  33. Boström, H. (1983) Binding of Cholesterol to Cytochromes P-450 from Rabbit Liver Microsomes, J. Biol. Chem. 258, 15091–15094.

    PubMed  Google Scholar 

  34. Schwartz, M.A., and Margolis, S. (1983) Effects of Drugs and Sterols on Cholesterol 7=ga-Hydroxylase Activity in Rat Liver Microsomes, J. Lipid Res. 24, 28–33.

    PubMed  CAS  Google Scholar 

  35. Javitt, N.B. (1990) Hep G2 Cells as a Resource for Metabolic Studies: Lipoprotein, Cholesterol, and Bile Acids, FASEB J. 4, 161–168.

    PubMed  CAS  Google Scholar 

  36. Everson, G.T., and Polokoff, M.A. (1986) HepG2. A Human Hepatoblastoma Cell Line Exhibiting Defects in Bile Acid Synthesis and Conjugation, J. Biol. Chem. 261, 2197–2201.

    PubMed  CAS  Google Scholar 

  37. Javitt, N.B., Pfeffer, R., Kok, E., Burstein, S., Cohen, B.I., and Budai, K. (1989) Bile Acid Synthesis in Cell Culture, J. Biol. Chem. 264, 10384–10387.

    PubMed  CAS  Google Scholar 

  38. Axelson, M., Mörk, B., and Everson, G.T. (1991) Bile Acid Synthesis in Cultured Human Hepatoblastoma Cells, J. Biol. Chem. 266, 17770–17777.

    PubMed  CAS  Google Scholar 

  39. Cooper, A.D., Craig, W.Y., Taniguchi, T., and Everson, G.T. (1994) Characteristics and Regulation of Bile Salt Synthesis and Secretion by Human Hepatoma HepG2 Cells, Hepatology 20, 1522–1531.

    PubMed  CAS  Google Scholar 

  40. Mitaka, T. (1998) The Current Status of Primary Hepatocyte Culture, Int. J. Exp. Pathol. 79, 393–409.

    Article  PubMed  CAS  Google Scholar 

  41. Princen, H.M.G., Meijer, P., Wolthers, B.G., Vonk R.J., and Kuipers, F. (1991) Cyclosporin A Blocks Bile Acid Synthesis in Cultured Hepatocytes by Specific Inhibition of Chenodeoxycholic Acid Synthesis, Biochem. J. 275, 501–505.

    PubMed  CAS  Google Scholar 

  42. Dahlbäck-Söberg, H., Björkhem, I., and Princen, H.M. (1993) Selective Inhibition of Mitochondrial 27-Hydroxylation of Bile Acid Intermediates and 25-Hydroxylation of Vitamin D3 by Cyclosporin A, Biochem. J. 293, 203–206.

    Google Scholar 

  43. Axelson, M., and Larsson, O. (1995) Low Density Lipoprotein (LDL) Cholesterol Is Converted to 27-Hydroxycholesterol in Human Fibroblasts. Evidence That 27-Hydroxycholesterol Can Be an Important Intracellular Mediator Between LDL and the Suppression of Cholesterol Production, J. Biol. Chem. 270, 15102–15110

    PubMed  CAS  Google Scholar 

  44. Winegar, D.A., Salisbury, J.A., Sundseth, S.S., and Hawke, R.L. (1996) Effects of Cyclosporin on Cholesterol 27-Hydroxylation and LDL Receptor Activity in HepG2 Cells, J. Lipid Res. 37, 179–191.

    PubMed  CAS  Google Scholar 

  45. Kan, C.-C., Yan, J., and Bittman, R. (1992) Rats of Spontaneous Exchange of Synthetic Radiolabeled Sterols Between Lipid Vesicles, Biochemistry 31, 1866–1874.

    Article  PubMed  CAS  Google Scholar 

  46. Chicoye, L., Powrie, W.D., and Fennema, O. (1968) Synthesis, Purification and Characterization of 7-Ketocholecterol and Epimeric 7-Hydroxycholesterols, Lipids 3, 551–556.

    CAS  PubMed  Google Scholar 

  47. Parish, E.J., Wei, T.-Y., and Livant, P. (1987) A Facile Synthesis and Carbon-13 Nuclear Magnetic Resonance Spectral Properties of 7-Ketocholesteryl Benzoate, Lipids 22, 760–763.

    PubMed  CAS  Google Scholar 

  48. Dean, R.T., Hylton, W., and Allison, A.C. (1979) Lysosomal Enzyme Secretion by Macrophages During Intracellular Storage of Particles, Biochim. Biophys. Acta 584, 57–65.

    PubMed  CAS  Google Scholar 

  49. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipid from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  50. Axelson, M., and Larsson, O. (1996) 27-Hydroxylated Low Density Lipoprotein (LDL) Cholesterol Can Be Converted to 7α, 27-Dihydroxy-4-cholesten-3-one (cytosterone) Before Suppressing Cholesterol Production in Normal Human Fibroblasts, J. Biol. Chem. 271, 12724–12736.

    Article  PubMed  CAS  Google Scholar 

  51. Cali, J.J., and Russell, D.W. (1991) Characterization of Human Sterol 27-Hydroxylase. A Mitochondrial Cytochrome P-450 That Catalyzes Multiple Oxidation Reactions in Bile Acid Biosynthesis, J. Biol. Chem. 266, 7774–7778.

    PubMed  CAS  Google Scholar 

  52. Björkhem, I., and Gustafsson, J. (1974) Mitochondrial ω-Hydroxylation of Cholesterol Side Chain, J. Biol. Chem. 249, 2528–2535.

    PubMed  Google Scholar 

  53. Gelissen, I.C., Brown, A.J., Mander, E.L., Kritharides, L., Dean, R.T., and Jessup, W. (1996) Sterol Efflux Is Impaired from Macrophage Foam Cells Selectively Enriched with 7-Ketocholesterol, J. Biol. Chem. 271, 17852–17860.

    Article  PubMed  CAS  Google Scholar 

  54. Mitton, J.R., Scholan, N.A., and Boyd, G.S. (1971) The Oxidation of Cholesterol in Rat Liver Sub-Cellular Particles. The Cholesterol-7α-Hydroxylase Enzyme System, Eur. J. Biochem. 20, 569–579.

    Article  PubMed  CAS  Google Scholar 

  55. Smith, L.L. (1981) Cholesterol Autoxidation, Plenum Press, New York.

    Google Scholar 

  56. Breuer, O., Sudjana-Sugiaman, E., Eggertsen, G., Chiang, J.Y.L., and Björkhem, I. (1993) Cholesterol 7α-Hydroxlase Is Up-Regulated by the Competitive Inhibitor 7-Oxocholesterol in Rat Liver, Eur. J. Biochem. 215, 705–710.

    Article  PubMed  CAS  Google Scholar 

  57. Brown, A.J., Watts, G.F., Burnett, J.R., Dean, R.T., and Jessup, W. (2000) Sterol 27-Hydroxylase Acts on 7-Ketocholesterol in Human Atherosclerotic Lesions and Macrophages in Culture, J. Biol. Chem. 275, 27627–27633.

    PubMed  CAS  Google Scholar 

  58. Burnett, J.R., Moses, E.A., Croft, K.D., Brown, A.J., Grainger, K., Vasikaran, S.D., Leitersdorf, E., and Watts, G.F. (2001) Clinical and Biochemical Features, Molecular Diagnosis and Long-Term Management of a Case of Cerebrotendinous Xanthomatosis, Clin. Chim. Acta 306, 63–69.

    Article  PubMed  CAS  Google Scholar 

  59. Theunissen, J., Jackson, R., Kempen, H., and Demel, R. (1986) Membrane Properties of Oxysterols. Interfacial Orientation, Influence on Membrane Permeability and Redistribution Between Membranes, Biochim. Biophys. Acta 860, 66–74.

    Article  PubMed  CAS  Google Scholar 

  60. Vine, D.F., Mamo, J.C.L., Beilin, L.J., Mori, T.A., and Croft, K.D. (1998) Dietary Oxysterols Are Incorporated in Plasma Triglyceride-Rich Lipoproteins, Increase Their Susceptibility to Oxidation, and Increase Aortic Cholesterol Concentration of Rabbits, J. Lipid Res. 39, 1995–2004.

    PubMed  CAS  Google Scholar 

  61. Rong, J., Rangaswamy, S., Shen, L., Dave, R., Chang, Y., Peterson, H., Hodis, H., Chisolm, G., and Sevanian, A. (1998) Arterial Injury by Cholesterol Oxidation Products Causes Endothelial Dysfunction and Arterial Wall Cholesterol Accumulation, Arterioscler. Thromb. Vasc. Biol. 18, 1885–1894.

    PubMed  CAS  Google Scholar 

  62. Rong, J.X., Shen, L., Chang, Y.H., Richters, A., Hodis, H.N., and Sevanian, A. (1999) Cholesterol Oxidation Products Induce Vascular Foam Cell Lesion Formation in Hypercholesterolemic New Zealand White Rabbits, Arterioscler. Thromb. Vasc. Biol. 19, 2179–2188.

    PubMed  CAS  Google Scholar 

  63. Lund, E.G., Kerr, T.A., Sakai, J., Li, W.-P., and Russell, D.W. (1998) cDNA Cloning of Mouse and Human Cholesterol 25-Hydroxylases. Polytopic Membrane Proteins That Synthesize a Potent Oxysterol Regulator of Lipid Metabolism, J. Biol. Chem. 273, 34316–34327.

    Article  PubMed  CAS  Google Scholar 

  64. Janowski, B.A., Grogan, M.J., Jones, S.A., Wisely, G.B., Kliewer, S.A., Corey, E.J., and Mangelsdorf, D.J. (1999) Structural Requirements of Ligands for the Oxysterol Liver X Receptors Lxrα and Lxrβ, Proc. Natl. Acad. Sci. USA 96, 266–271.

    Article  PubMed  CAS  Google Scholar 

  65. Brown, M.S., and Goldstein, J.L. (1999) A Proteolytic Pathway That Controls the Cholesterol Content of Membranes, Cells, and Blood, Proc. Natl. Acad. Sci. USA 96, 11041–11048.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Brown.

About this article

Cite this article

Lyons, M.A., Brown, A.J. Metabolism of an oxysterol, 7-ketocholesterol, by sterol 27-hydroxylase in hepG2 cells. Lipids 36, 701–711 (2001). https://doi.org/10.1007/s11745-001-0775-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-001-0775-8

Keywords

Navigation