Skip to main content
Log in

Fatty acid content of plasma lipids and erythrocyte phospholipids are altered following burn injury

  • Articles
  • Published:
Lipids

Abstract

The objective of this study was to examine compositional and quantitative changes in fatty acids of plasma components and red blood cell phospholipids (PL) immediately following and during recovery from burn injury. Subjects (n=10) with >10% total body surface area burn had blood drawn at specific timepoints (0 to >50 d) following burn injury. Fatty acid composition of red blood cell PL and plasma PL, cholesteryl esters (CE), and triglycerides was determined using gas-liquid chromatography after separating each fraction from extracted lipids by thin-layer chromatography. Total plasma PL and CE in burn patients were lower than in healthy control subjects with reduced 20∶4n−6, n−6, and n−3 fatty acids and higher levels of monounsaturated and saturated fatty acids early after burn. CE levels remained half that of healthy control values up to 50 d post-burn. Red blood cell PL had decreased 20∶4n−6 content and profiles similar to that of an essential fatty acid deficiency early after burn. These results suggest an impairment in lipoprotein and polyunsaturated fatty acid metabolism in the early post-burn period. Lower levels of 20∶4n−6 and n−3 fatty acids in every plasma fraction suggest increased use of these fatty acids for wound healing and immune function following burn injury. Further work is needed to determine the ability of burn patients to utilize essential fatty acids in order to design nutritional intervention that promotes wound healing and immunological functions consistent with recovery in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

CE:

cholesteryl ester

MCT:

medium-chain triglycerides

MUFA:

monounsaturated fatty acids

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PG:

prostaglandin

PI:

phosphatidylinositol

PL:

phospholipid

PS:

phosphatidylserine

PUFA:

polyunsaturated fatty acid

RBC:

red blood cell

SFA:

saturated fatty acid

TBSA:

total body surface area

TG:

triglyceride

References

  1. Wolfe, R.R., Shaw, J.H., and Durkot, M.J. (1983) Energy Metabolism in Trauma and Sepsis: The Role of Fat, Prog. Clin. Biol. Res. 111, 89–109.

    PubMed  CAS  Google Scholar 

  2. Gottschlich, M.M., and Alexander, J.W. (1987) Fat Kinetics and Recommended Dietary Intake in Burns, JPEN J. Parenter. Enteral Nutr. 11, 80–85.

    PubMed  CAS  Google Scholar 

  3. Wolfe, R.R., Herndon, D.N., Jahoor, F., Miyoshi, H., and Wolfe, M. (1987) Effect of Severe Burn Injury on Substrate Cycling by Glucose and Fatty Acids, N. Engl. J. Med. 317, 403–408.

    Article  PubMed  CAS  Google Scholar 

  4. Barton, R.G. (1994) Nutrition Support in Critical Illness, Nutr. Clin. Pract. 9, 127–139.

    PubMed  CAS  Google Scholar 

  5. Harris, R.L., Cottam, G.L., Johnston, J.M., and Baxter, C.R. (1981) The Pathogenesis of Abnormal Erythrocyte Morphology in Burns, J. Trauma 21, 13–21.

    PubMed  CAS  Google Scholar 

  6. Caffrey, B.B., and Jonsson, H.T., Jr. (1981) Role of Essential Fatty Acids in Cutaneous Wound Healing in Rats, Prog. Lipid Res. 20, 641–647.

    Article  PubMed  CAS  Google Scholar 

  7. Hulsey, T.K., O'Neill, J.A., Neblett, W.R., and Meng, H.C. (1980) Experimental Wound Healing in Essential Fatty Acid Deficiency, J. Pediatr. Surg. 15, 505–508.

    PubMed  CAS  Google Scholar 

  8. Calder, P.C. (1995) Fatty Acids, Dietary Lipids and Lymphocyte Functions, Biochem. Soc. Trans. 23, 302–309.

    PubMed  CAS  Google Scholar 

  9. Alexander, J.W. (1986) William A. Altemeier Lecture. Nutrition and Infection. New Perspectives for an Old Problem, Arch. Surg. 121, 966–972.

    PubMed  CAS  Google Scholar 

  10. Calder, P.C. (1999) Dietary Fatty Acids and the Immune System, Lipids 34 (Suppl.), S137-S140.

    PubMed  CAS  Google Scholar 

  11. Fischer, M.A., and Black, H.S. (1991) Modification of Membrane Composition, Eicosanoid Metabolism, and Immunore-sponsiveness by Dietary Omega-3 and Omega-6 Fatty Acid Sources. Modulatiors of Ultraviolet-Carcinogenesis, Photochem. Photobiol. 54, 381–387.

    PubMed  CAS  Google Scholar 

  12. Gottschlich, M.M. (1992) Selection of Optimal Lipid Sources in Enteral and Parenteral Nutrition, Nutr. Clin. Pract. 7, 152–165.

    PubMed  CAS  Google Scholar 

  13. Kinsella, J.E., Lokesh, B., Broughton, S., and Whelan, J. (1990) Dietary Polyunsaturated Fatty Acids and Eicosanoids: Potential Effects on the Modulation of Inflammatory and Immune Cells: An Overview, Nutrition 6, 24–62.

    PubMed  CAS  Google Scholar 

  14. Warden, G.D. (1973) Fluid Resuscitation and Early Management, in Total Burn Care (Herndon, D.H., ed.) pp. 53–60, WB Saunders Co., Philadeliphia.

    Google Scholar 

  15. Leape, L. (1970) Initial Changes in Burns: Tissue Changes in Burned and Unburned Skins of Rhesus Monkeys, J. Trauma 10, 488–492.

    PubMed  CAS  Google Scholar 

  16. Field, C.J., Gougeon, R., and Marliss, E.B. (1991) Changes in Circulating Leukocytes and Mitogen Responses During Very-Low-Energy All-Protein Reducing Diets, Am. J. Clin. Nutr. 54, 123–129.

    PubMed  CAS  Google Scholar 

  17. Field, W.E., Ferguson, F.G., Reddanna, P., and Reddy, C.C. (1988) The Effect of Selected Arachidonic Acid Metabolites on Natural Killer Cell Activity, Prostaglandins 36, 411–419.

    Article  PubMed  CAS  Google Scholar 

  18. Layne, K.S., Goh, Y.K., Jumpsen, J., Ryan, R.A., Chow, P., and Clandinin, M.T. (1996) Normal Subjects Consuming Physiological Levels of 18∶3(n−3) and 20∶5(n−3) from Flaxseed or Fish Oils Have Characteristic Differences in Plasma Lipid and Lipoprotein Fatty Acid Levels, J. Nutr. 126, 2130–2140.

    PubMed  CAS  Google Scholar 

  19. Touchstone, J.C., Chen, J.C., and Beaver, K.M. (1980) Improved Separation of Phospholipids in Thin-Layer Chromatography, Lipids 15, 61–62.

    CAS  Google Scholar 

  20. James, M.J., Gibson, R.A., D'Angelo, M., Neumann, M.A., and Cleland, L.G. (1993) Simple Relationships Exist Between Dietary Linoleate and the n−6 Fatty Acids of Human Neutrophils and Plasma, Am. J. Clin. Nutr. 58, 497–500.

    PubMed  CAS  Google Scholar 

  21. Batstone, G.F., Carlson, L.A., and Liljedahl, S.O. (1976) Metabolic Studies in Subjects Following Burn Injury, Burns 2, 207–211.

    Article  Google Scholar 

  22. Birke, G., Carlson, L.A., and Liljedahl, S.O. (1965) Lipid Metabolism and Trauma. 3. Plasma Lipids and Lipoproteins in Burns, Acta Med. Scand. 178, 337–350.

    Article  PubMed  CAS  Google Scholar 

  23. Coombes, E.J., Levick, P.L., and Shakespeare, P.G. (1979) Lipid Studies After Burn Injury in Man, Burns 5, 265–268.

    Article  Google Scholar 

  24. Kaufman, T., Brook, G.J., Hirshowitz, B., and Amir, I. (1978) Effect of an Egg-Rich Diet on Plasma Lipids and Proteins in Severely Burned Patients, Isr. J. Med. Sci. 14, 732–740.

    PubMed  CAS  Google Scholar 

  25. Coombes, E.J., Shakespeare, P.G., and Batstone, G.F. (1980) Lipoprotein Changes After Burn Injury in Man, J. Trauma 20, 971–975.

    PubMed  CAS  Google Scholar 

  26. Harris, R.L., Frenkel, R.A., Cottam, G.L., and Baxter, C.R. (1982) Lipid Mobilization and Metabolism After Thermal Trauma, J. Trauma 22, 194–198.

    Article  PubMed  CAS  Google Scholar 

  27. Fukushima, R., Alexander, J.W., Wu, J.Z., Mao, J.X., Szczur, K., Stephens, A.M., Ogle, J.D., and Ogle, C.K. (1994) Time Course of Production of Cytokines and Prostaglandin E2 by Macrophages Isolated After Thermal Injury and Bacterial Translocation, Circ. Shock 42 154–162.

    PubMed  CAS  Google Scholar 

  28. Waymack, J.P., Guzman, R.F., Burleson, D.G., McManus, A.T., Mason, A.D., and Pruitt, B.A.J. (1989) Effect of Prostaglandin E in Multiple Experimental Models. VI. Effect on T-Cell Subsets, Prostaglandins 38, 345–353.

    Article  PubMed  CAS  Google Scholar 

  29. Grbic, J.T., Mannick, J.A., Gough, D.B., and Rodrick, M.L. (1991) The Role of Prostaglandin E2 in Immune Suppression Following Injury, Ann. Surg. 214, 253–263.

    PubMed  CAS  Google Scholar 

  30. Teodorczyk-Injeyan, J.A., Sparkes, B.G., Peters, W.J., Gerry, K., and Falk, R.E. (1987) Prostaglandin E-Related Impaired Expression of Interleukin-2 Receptor in the Burn Patient, Adv. Prostaglandin Thromboxane Leukotriene Res. 17A, 147–150.

    CAS  Google Scholar 

  31. Hulsey, T.K., Burnham, S.J., Neblett, W.W., O'Neill, J.A.J., and Meng, H.C. (1977) Delayed Burn Wound Healing in Essential Fatty Acid Deficiency, Surg. Forum 28, 31–32.

    PubMed  CAS  Google Scholar 

  32. Gerster, H. (1995) The Use of n−3 PUFAs (Fish Oil) in Enteral Nutrition, Int. J. Vitam. Nutr. Res. 65, 3–20.

    PubMed  CAS  Google Scholar 

  33. Blackburn, G.L. (1992) Nutrition and Inflammatory Events: Highly Unsaturated Fatty Acids (Omega-3 vs. Omega-6) in Surgical Injury, Proc. Soc. Exp. Biol. Med. 200, 183–188.

    PubMed  CAS  Google Scholar 

  34. de Pablo, M.A., and Alvarez de Cienfuegos, G. (2000) Modulatory Effects of Dietary Lipids on Immune System Functions, Immunol. Cell Biol. 78, 31–39.

    Article  PubMed  Google Scholar 

  35. Caughey, G.E., Mantzioris, E., Gibson, R.A., Cleland, L.G., and James, M.J. (1996) The Effect on Human Tumor Necrosis Factor Alpha and Interleukin 1 Beta Production of Diets Enriched in n−3 fatty Acids from Vegetable Oil or Fish Oil, Am. J. Clin. Nutr. 63, 116–122.

    PubMed  CAS  Google Scholar 

  36. Cetinkale, O., and Yazici, Z. (1997) Early Postburn Fatty Acid Profile in Burn Patients, Burns 23, 392–399.

    Article  PubMed  CAS  Google Scholar 

  37. Smith, E.L., Hill, R.L., Lehmann, I.R., Lefkowitz, R.J., Handler, P., and White, A. (1983) Lipid Metabolism I, in Principles of Biochemistry General Aspects (Smith, E.L., Hill, R.L., Lehmann, I.R., Lefkowitz, R.J., Handler, P., and White, M., eds.) pp. 508–544, McGraw-Hill Book Company, New York.

    Google Scholar 

  38. Carter, E.A., and Tompkins, R.G. (1994) Injury-Induced Inhibition of Fat Absorption, J. Burn Care Rehabil. 15, 154–157.

    Article  PubMed  CAS  Google Scholar 

  39. Aarsland, A., Chinkes, D., Wolfe, R.R., Barrow, R.E., Nelson, S.O., Pierre, E., and Herndon, D.N. (1996) Beta-Blockade Lowers Peripheral Lipolysis in Burn Patients Receiving Growth Hormone. Rate of Hepatic Very Low Density Lipoprotein Triglyceride Secretion Remains Unchanged, Ann. Surg. 223, 777–787.

    Article  PubMed  CAS  Google Scholar 

  40. Mittendorfer, B., Jeschke, M.G., Wolf, S.E., and Sidossis, L.S. (1998) Nutritional Hepatic Steatosis and Mortality After Burn Injury in Rats, Clin. Nutr. 17, 293–299.

    Article  PubMed  CAS  Google Scholar 

  41. Huang, Y.S., Yang, Z.C., Liu, X.S., Chen, F.M., He, B.B., Li, A., and Crowther R.S. (1998) Serial Experimental and Clinical Studies on the Pathogenesis of Multiple Organ Dysfunction Syndrome (MODS) in Severe Burns, Burns 24, 706–716.

    Article  PubMed  CAS  Google Scholar 

  42. Czaja, A.J., Rizzo, T.A., Smith, W.R.J., and Pruitt, B.A., Jr. (1975) Acute Liver Disease After Cutaneous Thermal Injury, J. Trauma 15, 887–894.

    Article  PubMed  CAS  Google Scholar 

  43. Vega, G.L., and Baxter, C.R. (1988) Induction of Hypertriglyceridemia in Rabbits by Thermal Injury: I. Time Course of Elevated Plasma Triglyceride Levels, J. Burn Care Rehabil. 9, 266–270.

    Article  PubMed  CAS  Google Scholar 

  44. Groff, J.L., Gropper, S.S., and Hunt, S.M. (1995) Lipids, in Advanced Nutrition and Human Metabolism (Purrington, L., ed.) pp. 126–130, West Publishing Company, New York.

    Google Scholar 

  45. Stanford, J.L., King, I., and Kristal, A.R. (1991) Long-Term Storage of Red Blood Cells and Correlations Between Red Cell and Dietary Fatty Acids: Results from a Pilot Study, Nutr. Cancer, 16, 183–188.

    Article  PubMed  CAS  Google Scholar 

  46. Brown, A.J., Pang, E., and Roberts, D.C. (1991) Erythrocyte Eicosapentaenoic Acid Versus Docosahexaenoic Acid as a Marker for Fish and Fish Oil Consumption, Prostaglandins Leukotrienes Essent. Fatty Acids 44, 103–106.

    Article  CAS  Google Scholar 

  47. Innis, S.M. (1988) The Composition of Red Blood Cell Membrane Phospholipids in Canadian Inuit Consuming a Diet High in Marine Mammals, Lipids 23, 1066–1067.

    Google Scholar 

  48. Agren, J.J., Tormala, M.L., Nenonen, M.T., and Hanninen, O.O. (1995) Fatty Acid Composition of Erythrocyte, Platelet, and Serum Lipids in Strict Vegans, Lipids 30, 365–369.

    PubMed  CAS  Google Scholar 

  49. Diboune, M., Ferard, G., Ingenbleek, Y., Tulasne, P.A., Calon, B., Hasselmann, M., Sauder, P., Spielmann, D., and Metais, P. (1992) composition of Phospholipid Fatty Acids in Red Blood Cell Membranes of Patients in Intensive Care Units: Effects of Different Intakes of Soybean Oil, Medium-Chain Triglycerides, and Black-Currant Seed Oil, JPEN. J. Parenter. Enteral. Nutr. 16, 136–141.

    Article  PubMed  CAS  Google Scholar 

  50. Voss, A.C., and Sprecher, H. (1988) Regulation of Metabolism of Linoleic Acid to Arachidonic Acid in Rat Hepatocytes, Lipids 23, 660–665.

    PubMed  CAS  Google Scholar 

  51. Innis, S.M. (1986) Effect of Total Parenteral Nutrition with Linoleic Acid-Rich Emulsions on Tissue n−6 and n−3 Fatty Acid in Rat, Lipids 21, 132–138.

    PubMed  CAS  Google Scholar 

  52. Blond, J.P., Lemarchal, P., and Aagaard, O. (1984) A Study of the Effect of α-Linolenic Acid on the Desaturation of Dihomogammalinolenic Acid Using Rat Liver Homegenates, Reprod. Nutr. Dev. 24 1–10.

    PubMed  CAS  Google Scholar 

  53. Brenner, R. (1981) Nutritional and Hormonal Factors Influencing Desaturation of Essential Fatty Acids, Prog. Lipid Res. 20, 41–47.

    Article  PubMed  CAS  Google Scholar 

  54. Shen, C.S., and Ham, T.H. (1943) Studies on the Destruction of Red Blood Cells. III. Mechanism and Complications of Hemoglobinuria in Patients with Thermal Burns: Spherocytosis and Increased Osmotic Fragility of Red Blood Cells, N. Engl. J. Med. 229, 701–713.

    Article  Google Scholar 

  55. Welt, L.G. (1967) Membrane Transport Defect: The Sick Cell, Trans. Assoc. Am. Physicians 80, 217–226.

    PubMed  CAS  Google Scholar 

  56. Terry, B.E., and Wixom, R.L. (1975) Hemolytic Anemia Associated with Essential Fatty Acid Deficiency in Normal Man on Long-Term TPN, in Fat Emulsions in Parenteral Nutrition (Meng, H.C., and Wilmore, D.W., eds.) pp. 18–21, American Medical Association, Chicago.

    Google Scholar 

  57. Deitch, E.A., and Sittig, K.M. (1993) A Serial Study of the Erythropoietic Response to Thermal Injury, Ann. Surg. 217, 293–299.

    Article  PubMed  CAS  Google Scholar 

  58. Kinsella, J.E. (1990) Lipids, Membrane Receptors, and Enzymes: Effects of Dietary Fatty Acids, JPEN. J. Parenter. Enteral. Nutr. 14, 200S-217S.

    Article  PubMed  CAS  Google Scholar 

  59. Kahlenberg, A., and Banjo, B. (1972) Involvement of Phospholipids in the d-Glucose Uptake Activity of Isolated Human Erythrocyte Membranes, J. Biol. Chem. 247, 1156–1160.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine J. Field.

About this article

Cite this article

Pratt, V.C., Tredget, E.E., Clandinin, M.T. et al. Fatty acid content of plasma lipids and erythrocyte phospholipids are altered following burn injury. Lipids 36, 675–682 (2001). https://doi.org/10.1007/s11745-001-0772-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-001-0772-y

Keywords

Navigation