Skip to main content
Log in

Nonalcoholic components in wine reduce low density lipoprotein cholesterol in normocholesterolemic rats

  • Articles
  • Published:
Lipids

Abstract

Using an experimental model that enables the effects of alcohol to be distinguished from the effects of the nonalcoholic components present in wine, we determined whether wine has effects other than those of alcohol on the metabolism of cholesterol. Male rats were fed a standard diet and had free access to water and either wine or an equivalent alcohol solution for 45 d or 6 mon. Alcohol intake was similar in the two groups of animals. Consumption of the alcohol solution or wine did not influence plasma cholesterol or high density lipoprotein-cholesterol. At 45 d, the consumption both of wine and of alcohol solution reduced low density lipoprotein (LDL)-cholesterol and very low density lipoprotein cholesterol. At 6 mon, only the rats that consumed wine had reduced LDL-cholesterol. After 45 d of consuming alcohol solution, total cholesterol in the aorta was significantly increased mainly as a result of the rise in free cholesterol. In the aorta, the effect of wine consumption was similar to the effect of alcohol solution consumption, although it was less intense. The only clear effect that could be ascribed to the nonalcoholic components in wine was that the LDL-cholesterol was reduced in the long term, although aortic cholesterol was not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HDL:

high density lipoprotein

LDL:

low density lipoprotein

VLDL:

very low density lipoprotein

References

  1. Doll, R. (1998) The Benefit of Alcohol in Moderation, Drug Alcohol Rev. 17, 353–363.

    Article  PubMed  CAS  Google Scholar 

  2. Zakhari, S., and Gordis, E. (1999) Moderate Drinking and Cardiovascular Health, Proc. Assoc. Am. Phys. 111, 148–158.

    Article  PubMed  CAS  Google Scholar 

  3. Renaud, S., and De Logeril, M. (1992) Vin, Alcool, Plaquettes et Coronaropathies: le Paradoxe Français, Lancet (French edn.) 225, 22–25.

    Google Scholar 

  4. Cleophas, T.J. (1999) Wine, Beer and Spirits and the Risk of Myocardial Infarction: a Systematic Review, Biomed. Pharmacol. 53, 417–423.

    Article  CAS  Google Scholar 

  5. Tjonneland, A., Gronbaek, M., Stripp, C., and Overvad, K. (1999) Wine Intake and Diet in a Random Sample of 48763 Danish Men and Women, Am. J. Clin. Nutr. 69, 49–54.

    PubMed  CAS  Google Scholar 

  6. Das, D.K., Sato, M., Ray, P.S., Maulik, G., Engelman, R.M., Bertelli, A.A., and Bertelli, A. (1999) Cardioprotection of Red Wine: Role of Polyphenolic Antioxidants, Drugs Exp. Clin. Res. 25, 115–120.

    PubMed  CAS  Google Scholar 

  7. Gorinstein, S., Zemser, M., Weisz, M., Halevy, S., Martin-Bellosos, O., and Trakhtenberg, S. (1998) The Influence of Alcohol-Containing and Alcohol-Free Beverages on Lipid Levels and Lipid Peroxides in Serum of Rats, J. Nutr. Biochem. 9, 682–686.

    Article  CAS  Google Scholar 

  8. Di Carlo, G., Mascolo, N., Izzo, A.A., and Capasso, F. (1999) Flavonoids: Old and New Aspects of a Class of Natural Therapeutic Drugs, Life Sci. 65, 337–353.

    Article  PubMed  Google Scholar 

  9. ILSI North America Technical Committee on Food Components for Health Promotion (1999) Safety Assessment and Potential Health Benefits of Food Components Based on Selected Scientific Criteria, Crit. Rev. Food Sci. Nutr. 39, 203–316

    Article  Google Scholar 

  10. Soleas, G.J., Diamandis, E.P., and Goldberg, D.M. (1997) Wine as a Biological Fluid: History, Production, and Role in Disease Prevention, J. Clin. Lab. Anal. 11, 287–313.

    Article  PubMed  CAS  Google Scholar 

  11. Yamakoshi, J., Kataoka, S., Koga, T., and Ariga, T. (1999) Proanthocyanidin-Rich Extract from Grape Seeds Attenuates the Development of Aortic Atherosclerosis in Cholesterol-Fed Rabbits, Atherosclerosis 142, 139–149.

    Article  PubMed  CAS  Google Scholar 

  12. Hayek, T., Fuhrman, B., Vaya, J., Rosenblat, M., Belinky, P., and Colemen, R. (1997) Reduced Progression of Atherosclerosis in Apolipoprotein E-Deficient Mice Following Consumption of Red Wine, or Its Polyphenols Quercetin or Catechins, Is Associated with Reduced Susceptibility of LDL to Oxidation and Aggregation, Arterioscler. Thromb. Vasc. Biol. 17, 2744–2752.

    PubMed  CAS  Google Scholar 

  13. Lairon, D., and Amiot, M.J. (1999) Flavonoids in Food and Natural Antioxidants in Wine, Curr. Opinion Lipid. 10, 23–28.

    Article  CAS  Google Scholar 

  14. Tebib, K., Besançon, P., and Rouanet, J.M. (1994) Dietary Grape Seed Tannins Affect Lipoproteins, Lipoprotein Lipase and Tissue Lipids in Rats Fed Hypercholesterolemic Diets, J. Nutr. 124, 2451–2457.

    PubMed  CAS  Google Scholar 

  15. Tebib, K., Besançon, P., and Rouanet, J.M. (1994) Polymeric Grape Seed Tannins Prevent Plasma Cholesterol Changes in High-Cholesterol-Fed Rats, Food Chem. 49, 403–406.

    Article  CAS  Google Scholar 

  16. Gesquière, L., Loreau, N., Minnich, A., Davignon, J., and Blache, D. (1999) Oxidative Stress Leads to Cholesterol Accumulation in Vascular Smooth Muscle Cells, Free Radicals Biol. Med. 27, 134–145.

    Article  Google Scholar 

  17. Blache, D., Gesquière, L., Loreau, N., and Durand, P. (1999) Oxidant Stress: the Role of Nutrients in Cell-Lipoprotein Interactions, Proc. Nutr. Soc. 58, 559–563.

    PubMed  CAS  Google Scholar 

  18. Arola, L., Roig, R., Cascón, E., Brunet, M.J., Fornós, N., Sabaté, M., Raga, X., Batista, J., Salvadó, M.J., and Bladé, C. (1997) Model for Voluntary Wine and Alcohol Consumption in Rats, Physiol. Behav. 62, 353–357.

    Article  PubMed  CAS  Google Scholar 

  19. Havel, R.J., Eder, H.A., and Brajdon, J.H. (1955) Dedistribution and Chemical Composition of Ultracentrifugally Separated Lipoproteins in Human Serum, J. Clin. Invest. 34, 1345–1353.

    Article  PubMed  CAS  Google Scholar 

  20. Fontanals-Ferrer, N., Serrat-Serrat, J., Sorribas-Vivas, A., and Gonzalez-Garcia, C. (1988) Quick Method of Determining Lipoproteins, Including Those of Intermediate Density, in Serum, Clin. Chem. 34, 1753–1757.

    PubMed  CAS  Google Scholar 

  21. McGovan, M.W., Artiss, J.D., Strandbergh, D.R., and Zak, B. (1983) A Peroxidase-Coupled Method for the Colorimetric Determination of Serum Triglycerides, Clin. Chem. 29, 538–542.

    Google Scholar 

  22. Zoppi, F., and Fellini, D. (1976) Enzymatic Determination of Total Serum Cholesterol with the Vickers D-300 Analyzer, Clin. Chem. 22, 690–691.

    PubMed  CAS  Google Scholar 

  23. Folch, J., Lees, M., and Sloane Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  24. De Wael, J., Raaymarkers, C.E., and Endeman, H.J. (1977) Simplified Quantitative Determination of Total Fecal Bile Acids, Clin. Chim. Acta 79, 465–470.

    Article  PubMed  Google Scholar 

  25. Tall, A.R. (1993) Plasma Cholesteryl Ester Transfer Proteins, J. Lipid Res. 34, 1255–1274.

    PubMed  CAS  Google Scholar 

  26. Yamamoto, K., Yoshitama, A., Sakono, M., Nasu, T., Murakami, S., and Fukuda, N. (2000) Dietary Taurine Decreases Hepatic Secretion of Cholesterol Esters in Rats Fed High-Cholesterol Diet, Phamacology 60, 27–33.

    CAS  Google Scholar 

  27. Satchithanandam, S., Flynn, T.J., Calvert, R.J., and Kritchevsky, D. (1999) Effect of Peanut Oil and Randomized Peanut Oil on Cholesterol and Oleic Acid Absorption, Transport, and Distribution in the Lymph of the Rat, Lipids 34, 1305–1311.

    Article  PubMed  CAS  Google Scholar 

  28. Gaziano, J.M., Hennekens, C.H., Godfried, S.L., Sesso, H.D., Glynn, R.J., Breslow, J.L., and Buring, J.E. (1999) Type of Alcoholic Beverage and Risk of Myocardial Infarction, Am. J. Cardiol. 83, 52–57.

    Article  PubMed  CAS  Google Scholar 

  29. Rajendran, S., Deepalakshmi, P.D., Parasakthy, K., and Devaraj, H. (1996) Effect of Tincture Crataegus on the LDL-Receptor Activity of Hepatic Plasma Membrane of Rats Fed an Atherogenic Diet, Atherosclerosis 123, 235–241.

    Article  PubMed  CAS  Google Scholar 

  30. Griffin, B.A. (1999) Lipoprotein Atherogenicity: An Overview of Current Mechanisms, Proc. Nutr. Soc. 58, 163–169.

    Article  PubMed  CAS  Google Scholar 

  31. Stehbens, W.E. (1999) The Oxidative Stress Hypothesis of Atherosclerosis: Cause or Product? Med. Hypotheses 53, 507–515.

    Article  PubMed  CAS  Google Scholar 

  32. Tertov, V.V., Kaplun, V.V., and Orekhov, A.N. (1998) In Vivo Oxidized Low Density Lipoprotein: Degree of Lipoprotein Oxidation Does Not Correlate with Its Atherogenic Properties, Mol. Cell. Biochem. 183, 141–146.

    Article  PubMed  CAS  Google Scholar 

  33. Carr, T.P., Cai, G., Lee, J.Y., and Schneider, C.L. (2000) Cholesteryl Ester Enrichment of Plasma Low-Density Lipoproteins in Hamsters Fed Cereal-Based Diets Containing Cholesterol, Proc. Soc. Exp. Biol. Med. 223, 96–101.

    Article  PubMed  CAS  Google Scholar 

  34. Roig, R., Cascón, E., Arola, L., Bladé, C., and Salvadó, M.J. (1999) Moderate Red Wine Consumption Protects the Rat Against Oxidation in Vivo, Life Sci. 64, 1517–1524.

    Article  PubMed  CAS  Google Scholar 

  35. Bok, S.H., Lee, S.H., Park, Y.B., Bae, K.H., Son, K.H., Jeong, T.S., and Choi, M.S. (1999) Plasma and Hepatic Cholesterol and Hepatic Activities of 3-Hydroxy-3-methyl-glutaryl-CoA Reductase and Acyl CoA:Cholesterol Transferase Are Lower in Rats Fed Citrus Peel Extract or a Mixture of Citrus Bioflavonoids, J. Nutr. 129, 1182–1185.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinta Bladé.

About this article

Cite this article

Cascón, E., Roig, R., Ardèvol, A. et al. Nonalcoholic components in wine reduce low density lipoprotein cholesterol in normocholesterolemic rats. Lipids 36, 383–388 (2001). https://doi.org/10.1007/s11745-001-0732-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-001-0732-6

Keywords

Navigation