Skip to main content

Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids

Abstract

Atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) has proven to be a very valuable technique for analysis of lipids from a variety of classes. This instrumental method readily produces useful ions with gentle fragmentation from large neutral molecules such as triacylglycerols and carotenoids, which are often difficult to analyze using other techniques. Molecules that are easily ionized, such as phospholipids, produce molecular ions and diagnostically useful fragment ions that are complementary to those produced by methods such as electrospray ionization MS with collision-induced dissociation. The simplicity and versatility of APCI-MS make it an ideal tool for use in solving hitherto very difficult analytical problems.

This is a preview of subscription content, access via your institution.

Abbreviations

ACN:

acyl carbon number

AMVN:

azobis(2,4-dimethylvaleronitrile)

APCI:

atmospheric pressure chemical ionization

API:

atmospheric pressure ionization

Br-MB:

3-bromomethyl-7-methoxy-1,4-benzoxazin-2-one

CID:

collision-induced dissociation

cSFC:

capillary supercritical fluid chromatography

DAG:

diacylglycerol

ECN:

equivalent carbon number

EIC:

extracted ion chromatogram

ELSD:

evaporative light-scattering detector

ESI:

electrospray ionization

FA:

fatty acid

FAME:

fatty acid methyl ester

FI:

flow injection

FID:

flame-ionization detection

GC:

gas chromatography

L:

linoleic acid

LC:

liquid chromatography

Ln:

linolenic acid

LSIMS:

liquid secondary ion mass spectrometry

MAG:

monoacylglycerol

MS:

mass spectrometry

MS/MS:

tandem mass spectrometry

O:

oleic acid

P:

palmitic acid

PC:

phosphatidylcholine

PG:

phosphatidylglycerol

RP-HPLC:

reversed-phase high-performance liquid chromatography

S:

stearic acid

SFC:

supercritical fluid chromatography

SIM:

selected ion monitoring

TAG:

triacylglycerol

THCA:

3α,7α,12α-trihydroxy-5β-cholestanic acid

TSP:

thermospray

UV:

ultraviolet

Vis:

visible

References

  1. 1.

    Niessen, W.M.A. (1999) in Liquid Chromatography—Mass Spectrometry, 2nd edn. (Niessen, W.M.A., ed.) Marcel Dekker, Inc., New York, p. 99.

    Google Scholar 

  2. 2.

    Thomson, B.A. (1998) Atmospheric Pressure Ionization and Liquid Chromatography—Together at Last, J. Am. Soc. Mass Spectrom. 9, 187–193.

    CAS  Article  Google Scholar 

  3. 3.

    Horning, E.C., Horning, M.G., Carroll, D.I., Dzidic, I., and Stillwell, R.N. (1973) New Picogram Detection System Based on a Mass Spectrometer with an External Ionization Source at Atmospheric Pressure, Anal. Chem. 45, 936–943.

    CAS  Article  Google Scholar 

  4. 4.

    Carroll, D.I., Dzidic, I., Stillwell, R.N., Horning, M.G., and Horning, E.C. (1974) Subpicogram Detection System for Gas Phase Analysis Based Upon Atmospheric Pressure Ionization (API) Mass Spectrometry, Anal. Chem. 46, 706–710.

    CAS  Article  Google Scholar 

  5. 5.

    Horning, E.C., Carroll, D.I., Dzidic, I., Haegele, K.D., Horning, M.G., and Stillwell, R.N. (1974) Atmospheric Pressure Ionization Mass Spectrometry. Solvent-Mediated Ionization of Samples Introduced in Solution and in a Liquid Chromatographic Effluent Stream, J. Chromatogr. Sci. 12, 725–729.

    PubMed  CAS  Google Scholar 

  6. 6.

    Carroll, D.I., Dzidic, I., Stillwell, R.N., Haegele, K.D., and Horning, E.C. (1975) Atmospheric Pressure Ionization Mass Spectrometry: Corona Discharge Ion Source for Use in Liquid Chromatography-Mass Spectrometer-Computer Analytical System, Anal. Chem. 47, 2369–2373.

    CAS  Article  Google Scholar 

  7. 7.

    Whitehouse, C.M., Dreyer, R.N., Yamashita, M., and Fenn, J.B. (1985) Electrospray Interface for Liquid Chromatographs and Mass Spectrometers, Anal. Chem. 57, 675–679.

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    Mann, M., Meng, C.K., and Fenn, J.B. (1989) Interpreting Mass Spectra of Multiply Charged Ions, Anal. Chem. 61, 1702–1708.

    CAS  Article  Google Scholar 

  9. 9.

    Bruins, A.P., Covey, T.R., and Henion, J.D. (1987) Ion Spray Interface for Combined Liquid Chromatography/Atmospheric Pressure Ionization Mass Spectrometry, Anal. Chem. 59, 2642–2646.

    CAS  Article  Google Scholar 

  10. 10.

    Byrdwell, W.C. (1998) APCI-MS for Lipid Analysis, inform 9, 986–997.

    Google Scholar 

  11. 11.

    Good, A., Durden, D.A., and Kebarle, P. (1970) Ion-Molecule Reactions in Pure Nitrogen and Nitrogen Containing Traces of Water at Total Pressures 0.5–4 Torr. Kinetics of Clustering Reactions Forming H+ (H2O) n , J. Chem. Phys. 52, 212–221.

    CAS  Article  Google Scholar 

  12. 12.

    Kusaka, T., Ikeda, M., Nakano, H., and Numajiri, Y. (1988) Liquid Chromatography/Mass Spectrometry of Fatty Acids as Their Anilides, J. Biochem. 104, 495–497.

    PubMed  CAS  Google Scholar 

  13. 13.

    Ikeda, M., and Kusaka, T. (1992) Liquid Chromatography-Mass Spectrometry of Hydroxy and Non-Hydroxy Fatty Acids as Amide Derivatives, J. Chromatogr. 575, 197–205.

    PubMed  CAS  Google Scholar 

  14. 14.

    Kusaka, T., and Ikeda, M. (1993) Liquid Chromatography-Mass Spectrometry of Fatty Acids Including Hydroxy and Hydroperoxy Acids as Their 3-Methyl-7-methoxy-1,4-benzoxazin-2-one Derivatives, J. Chromatogr. 639, 165–173.

    CAS  Article  Google Scholar 

  15. 15.

    Tyrefors, L.N., Moulder, R.X., and Markides, K.E. (1993) Interface for Open Tubular Column Supercritical Fluid Chromatography/Atmospheric Pressure Chemical Ionization Mass Spectrometry, Anal. Chem. 65, 2835–2840.

    CAS  Article  Google Scholar 

  16. 16.

    Byrdwell, W.C., and Emken, E.A. (1995) Analysis of Triglycerides Using Atmospheric Pressure Chemical Ionization Mass Spectrometry, Lipids 30, 173–175.

    PubMed  CAS  Google Scholar 

  17. 17.

    Neff, W.E., and Byrdwell, W.C. (1995) Soybean Oil Triacylglycerol Analysis by Reversed-Phase High-Performance Liquid tography/Mass Spectrometry, J. Am. Oil. Chem. Soc. 77, 1049–1059.

    Google Scholar 

  18. 47.

    Rezanka, T. (2000) Analysis of Very Long Chain Polyunsaturated Fatty Acids Using High-Performance Liquid Chromatography-Atmospheric Pressure Chemical Ionization Mass Spectrometry, Biochem. System. Ecol. 28, 847–856.

    CAS  Article  Google Scholar 

  19. 48.

    Rezanka, T. (2000) Analysis of Polyunsaturated Fatty Acids Using High Performance Liquid Chromatography-Atmospheric Pressure Chemical Ionization Mass Spectrometry, J. High Resolut. Chromatogr. 23, 338–342.

    CAS  Article  Google Scholar 

  20. 49.

    Bylund, J., Ericsson, J., and Oliw, E.H. (1998) Analysis of Cytochrome P450 Metabolites of Arachidonic and Linoleic Acids by Liquid Chromatography-Mass Spectrometry with Ion Trap MS2, Anal. Biochem. 265, 55–68.

    PubMed  CAS  Article  Google Scholar 

  21. 50.

    Karlsson, A.A., Michelson, P., Larsen, A., and Odham, G. (1996) Normal-Phase Liquid Chromatography Class Separation and Species Determination of Phospholipids Utilizing Electrospray Mass Spectrometry/Tandem Mass Spectrometry, Rapid Commun. Mass Spectrom. 10, 775–780.

    CAS  Article  Google Scholar 

  22. 51.

    Byrdwell, W.C., and Borchman, D. (1997) Liquid Chromatography/Mass-Spectrometric Characterization of Sphingomyelin and Dihydrosphingomyelin of Human Lens Membranes, Ophthalmic Res. 29, 191–206.

    PubMed  CAS  Article  Google Scholar 

  23. 52.

    Byrdwell, W.C. (1998) Dual Parallel Mass Spectrometers for Analysis of Sphingolipid, Glycerolipid and Plasmalogen Molecular Species, Rapid. Commun. Mass Spectrom. 12, 256–272.

    PubMed  CAS  Article  Google Scholar 

  24. 53.

    Karlsson, A.A., Michelsen, P., and Odham, G. (1998) Molecular Species of Sphingomyelin: Determination by High-Performance Liquid Chromatography/Mass Spectrometry with Electrospray and High-Performance Liquid Chromatography/Tandem Mass Spectrometry with Atmospheric Pressure Chemical Ionization, J. Mass Spectrom. 33, 1192–1198.

    PubMed  CAS  Article  Google Scholar 

  25. 54.

    Qiu, D.F., Xiao, X.Y., Walton, T.J., Games, M.P.L., and Games, D.E. (1999) High-Performance Liquid Chromatography/Atmospheric Pressure Chemical Ionization Mass Spectrometry of Phospholipids in Natronobacterium magadii, Eur. Mass Spectrom. 5, 151–156.

    CAS  Google Scholar 

  26. 55.

    Couch, L.H., Churchwell, M.I., Doerge, D.R., Tolleson, W.H., and Howard, P.C. (1997) Identification of Ceramides in Human Cells Using Liquid Chromatography with Detection by Atmospheric Pressure Chemical Ionization-Mass Spectrometry, Rapid Commun. Mass Spectrom. 11, 504–512.

    PubMed  CAS  Article  Google Scholar 

  27. 56.

    Van Breeman, R.B., Huang, C.R., Tan, Y., Sander, L.C., and Schilling, A.B. (1996) Liquid Chromatography/Mass Spectrometry of Carotenoids Using Atmospheric Pressure Chemical Ionization, J. Mass Spectrom. 31, 975–981.

    Article  Google Scholar 

  28. 57.

    Clarke, P.A., Barnes, K.A., Startin, J.R., Ibe, F.I., and Shepherd, M.J. (1996) High Performance Liquid Chromatography/Atmospheric Pressure Chemical Ionization Mass Spectrometry for the Determination of Carotenoids, Rapid Commun. Mass Spectrom. 10, 1781–1785.

    CAS  Article  Google Scholar 

  29. 58.

    Liebler, D.C., and McClure, T.D. (1996) Antioxidant Reactions of β-Carotene: Identification of Carotenoid-Radical Adducts, Chem. Res. Toxicol. 9, 8–11.

    PubMed  CAS  Article  Google Scholar 

  30. 59.

    Tang, G.W., Andrien, B.A., Dolnikowski, G.G., and Russell, R.M. (1997) Atmospheric Pressure Chemical Ionization Mass Spectrometry in Studying β-Carotene Conversion to Retinol in Humans, Methods Enzymol. 282, 140–154.

    PubMed  CAS  Article  Google Scholar 

  31. 60.

    Hagiwara, T., Yasuno, T., Funayama, K., and Suzuki, S. (1997) Determination of Lycopene, α-Carotene and β-Carotene in Vegetable Juice by Liquid Chromatography Atmospheric Pressure Chemical Ionization Mass Spectrometry, J. Food Hyg. Soc. Jpn. 38, 211–218.

    CAS  Google Scholar 

  32. 61.

    Hagiwara, T., Yasuno, T., Funayama, K., and Suzuki, S. (1998) Determination of Lycopene, α-Carotene and β-Carotene in Serum by Liquid Chromatography-Atmospheric Pressure Chemical Ionization Mass Spectrometry with Selected Ion Monitoring, J. Chromatogr. B 708, 67–73.

    CAS  Google Scholar 

  33. 62.

    van Breeman, R.B., Nikolic, D., Xu, X., Xiong, Y., van Lieshout, M., West, C.E., and Schilling, A.B. (1998) Development of a Method for Quantitation of Retinol and Retinyl Palmitate in Human Serum Using High-Performance Liquid Chromatography-Atmospheric Pressure Chemical Ionization-Mass Spectrometry, J. Chromatogr. A 794, 245–251.

    Article  Google Scholar 

  34. 63.

    Wang, Y., Xu, X., van Lieshout, M., West, C.E., Lugtenburg, J., Verhoeven, M.A., Creemers, A.F.L., Muhilal, and van Breemen, R.B. (2000) A Liquid Chromatography-Mass Spectrometry Method for the Quantification of Bioavailability and Bioconversion of β-Carotene to Retinol in Humans, Anal. Chem. 72, 4999–5003.

    PubMed  CAS  Article  Google Scholar 

  35. 64.

    Lacker, T., Strohschein, S., and Albert, K. (1999) Separation and Identification of Various Carotenoids by C30 Reversed-Phase High-Performance Liquid Chromatography Coupled to UV and Atmospheric Pressure Chemical Ionization Mass Spectrometric Detection, J. Chromatogr. A 854, 37–44.

    PubMed  CAS  Article  Google Scholar 

  36. 65.

    Hopmans, E.C., Schouten, S., Pancost, R.D., Marcel, T.J., van der Meer, M.T.J., and Sinninghe Damste, J.S. (2000) Analysis of Intact Tetraether Lipids in Archaeal Cell Material and Sediments by High Performance Liquid Chromatography/Atmospheric Pressure Chemical Ionization Mass Spectrometry, Rapid Commun. Mass Spectrom. 14, 585–589.

    PubMed  CAS  Article  Google Scholar 

  37. 66.

    Mitamura, K., and Shimada, K. (1999) High-Performance Liquid Chromatography Mass Spectrometry of Steroids, Bunseki Kagaku (Japanese) 48, 401–411.

    CAS  Google Scholar 

  38. 67.

    Shimada, K. (1997) Analysis of Neurosteroids, Yakugaku Zasshi [J. Pharm. Soc. Jpn.] (Japanese) 117, 681–689.

    CAS  Google Scholar 

  39. 68.

    Adachi, J., Ueno, Y., Asano, M., Nushida, H., and Tatsuno, Y. (1997) Analysis of Cholesterol Oxidation Products Using High-Performance Liquid Chromatography/Mass Spectrometry, Nippon Iyo Masu Supekutoru Gakkai Koenshu (Japanese) 22, 145–148.

    CAS  Google Scholar 

  40. 69.

    Kobayashi, Y., Saiki, K., and Watanabe, F. (1993) Characteristics of Mass Fragmentation of Steroids by Atmospheric Pressure Chemical Ionization-Mass Spectrometry, Biol. Pharm. Bull. 16, 1175–1178.

    PubMed  CAS  Google Scholar 

  41. 70.

    Ma, Y.-C., and Kim, H.-Y. (1997) Determination of Steroids by Liquid Chromatography/Mass Spectrometry, J. Am. Soc. Mass Spectrom. 8, 1010–1020.

    CAS  Article  Google Scholar 

  42. 71.

    Joos, P.E., and van Ryckeghem, M. (1999) Liquid Chromatography-Tandem Mass Spectrometry of Some Anabolic Steroids, Anal. Chem. 71, 4701–4710.

    PubMed  CAS  Article  Google Scholar 

  43. 72.

    Gamoh, K., Abe, H., Shimada, K., and Takatsuto, S. (1996) Liquid Chromatography Mass Spectrometry with Atmospheric Pressure Chemical Ionization of Free Brassinosteroids, Rapid Commun. Mass Spectrom. 10, 903–906.

    CAS  Article  Google Scholar 

  44. 73.

    Gamoh, K., Prescott, M.C., Goad, L.J., and Takatsuto, S. (1996) Analysis of Brassinosteroids by Liquid Chromatography Mass Spectrometry, Bunseki Kagaku (Japanese) 45, 523–527.

    CAS  Google Scholar 

  45. 74.

    Huopalahti, R.P., and Henion, J.D. (1996) Application of Supercritical Fluid Extraction and High Performance Liquid Chromatography Mass Spectrometry for the Determination of Some Anabolic Agents Directly from Bovine Tissue Samples, J. Liq. Chromatog. Rel. Technol. 19, 69–87.

    CAS  Google Scholar 

  46. 75.

    Fredline, V.F., Taylor, P.J., Dodds, H.M., and Johnson, A.G. (1997) A Reference Method for the Analysis of Aldosterone in Blood by High-Performance Liquid Chromatography Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry, Anal. Biochem. 252, 308–313.

    PubMed  CAS  Article  Google Scholar 

  47. 76.

    Wainwright, G., Prescott, M.C., Lomas, L.O., Webster, S.G., and Rees, H.H. (1997) Development of a New High-Performance Liquid Chromatography Mass Spectrometric Method for the Analysis of Ecdysteroids in Biological Extracts, Arch. Insect Biochem. Physiol. 35, 21–31.

    CAS  Article  Google Scholar 

  48. 77.

    Constanzer, M.L., Chavez, C.M., Matuszewski, B.K., Carlin, J., and Graham, D. (1997) Low Level Determination of a Novel 4-Azasteroid and Its Carboxylic Acid Metabolite in Human Plasma and Semen Using High-Performance Liquid Chromatography with Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry, J. Chromatogr. A 693, 117–129.

    CAS  Google Scholar 

  49. 78.

    Sjoberg, P.J.R., and Markides, K.E. (1998) Energy-Resolved Collision-Induced Dissociation Atmospheric Pressure Chemical Ionization Mass Spectrometry of Constitutional and Stereo Steroid Isomers, J. Mass Spectrom. 33, 872–883.

    CAS  Article  Google Scholar 

  50. 79.

    Tuomola, M., Hakala, M., and Manninen, P. (1998) Determination of Androstenone in Pig Fat Using Packed Column Supercritical Fluid Chromatography Mass Spectrometry, J. Chromatogr. B 719, 25–30.

    CAS  Google Scholar 

  51. 80.

    Nakajima, M., Yamato, S., and Shimada, K. (1998) Determination of Dehydroepiandrosterone Sulphate in Biological Samples by Liquid Chromatography Atmospheric Pressure Chemical Ionization Mass Spectrometry Using [7,7,16,16-H-2(4)]-Dehydroepiandrosterone Sulphate as an Internal Standard, Biomed. Chromatogr. 12, 211–216.

    PubMed  CAS  Article  Google Scholar 

  52. 81.

    Ikegawa, S., Goto, T., Mano, N., and Goto, J. (1998) Substrate Specificity of THCO-CoA Oxidases from Rat Liver Light Mitochondrial Fractions on Dehydrogenation of 3α,7α,12α-Trihydroxy-5β Cholestanoic Acid CoA Thioester, Steroids 63, 603–607.

    PubMed  CAS  Article  Google Scholar 

  53. 82.

    Shimada, K., and Mukai, Y. (1998) Studies on Neurosteroids VII. Determination of Pregnenolone and Its 3-Stearate in Rat Brains Using High-Performance Liquid Chromatography-Atmospheric Pressure Chemical Ionization Mass Spectrometry, J. Chromatogr. B 714, 153–160.

    CAS  Google Scholar 

  54. 83.

    Rule, G., and Henion, J. (2000) High-Throughput Sample Preparation and Analysis Using 96-Well Membrane Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry for the Determination of Steroids in Human Urine, J. Am. Soc. Mass Spectrom. 10, 1322–1327.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to William Craig Byrdwell.

About this article

Cite this article

Byrdwell, W.C. Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids. Lipids 36, 327–346 (2001). https://doi.org/10.1007/s11745-001-0725-5

Download citation

Keywords

  • Atmospheric Pressure Chemical Ionization
  • Vernolic Acid
  • Pressure Chemical Ionization Mass Spectrometry
  • Atmospheric Pressure Chemical Ionization Interface
  • Atmospheric Pressure Chemical Ionization Mass Spectrum