Skip to main content
Log in

A Fast and reliable spectroscopic method for the determination of membrane-water partition coefficients of organic compounds

  • Published:
Lipids

Abstract

Partition coefficients (K p ) between egg yolk phosphatidylcholine multilamellar vesicles and water were determined for two nonsteroidal anti-inflammatory drugs (indomethacin and acemetacin) using two independent methodologies: derivative spectrophotometry and variation of the experimental acidity constant in the presence of increasing vesicle concentration. Second-derivative spectrophotometry allowed for total elimination of background signal effects arising from lipid vesicles, without the need for separation techniques that may disturb equilibrium states. By using a model based on a simple partition, the values of K T p can be obtained directly; furthermore, by performing determinations at two different pH values it is possible to calculate partition coefficients for the neutral and negatively charged forms of the drugs (K AH p and K A p ). In the other methodology, values of apparent acidity constants (K app) were determined by spectrophotometry at different pH values and different lipid concentrations, and an increase in K app with decreasing lipid concentration was observed for both drugs, and from this dependence it was possible to calculate K AH p and K A- p for each drug. These values were used as a check for those obtained by derivative spectroscopy, which has proven to be a reliable and more expeditious method to obtain K AH p and K A- p .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EPC:

egg yolk phosphatidylcholine

References

  1. Hansch, C., and Dunn, W.J., III (1972) Linear Relationships Between Lipophilic Character and Biological Activity of Drugs, J. Pharm. Sci. 61, 1-19.

    Article  PubMed  CAS  Google Scholar 

  2. Mason, R.P., Rhodes, D.G., and Herbette L.G. (1991) Reevaluating Equilibrium and Kinetic Binding Parameters for Lipophilic Drugs Based on a Structural Model for Drug Interaction with Biological Membranes, J. Med. Chem. 34, 869–877.

    Article  PubMed  CAS  Google Scholar 

  3. Betageri, G.V., and Rogers, J.A. (1988) The Liposome as a Distribution Model in QSAR Studies, Int. J. Pharm. 46, 95–102.

    Article  CAS  Google Scholar 

  4. Choi, Y.W., and Rogers, J.A. (1990) The Liposome as a Model Membrane in Correlations of Partitioning with α-Adrenoceptor Agonist Activities, Pharm. Res. 7, 508–512.

    Article  PubMed  CAS  Google Scholar 

  5. Gobas, F.A.P.C., Lahittete, J.M., Garofalo, G., and Shiu, W.Y. (1988) A Novel Method for Measuring Membrane-Water Partition Coefficients of Hydrophobic Organic Chemicals: Comparison with 1-Octanol-Water Partitioning, J. Pharm. Sci. 77, 265–272.

    Article  PubMed  CAS  Google Scholar 

  6. Knaub, S.R., Chang, M.F., Lunte, C.E., Topp, E.M., and Riley, C.M. (1995) Automated Analytical Systems for Drug Development Studies. Part IV. A Microdialysis System to Study the Partitioning of Lomefloxacin Across an Erythrocyte Membrane in vitro, J. Pharm. Biomed. Anal. 14, 121-129.

    Article  PubMed  CAS  Google Scholar 

  7. Ong, S., Liu, H., Qiu, X., Bhat, G., and Pidgeon, C. (1995) Membrane Partition Coefficients Chromatographically Measured Using Immobilized Artificial Membrane Surfaces, Anal. Chem. 67, 755–762.

    Article  PubMed  CAS  Google Scholar 

  8. Beigi, F., Yang, Q., and Lundahl, P. (1995) Immobilized-Liposome Chromatographic Analysis of Drug Partitioning into Lipid Bilayers, J. Chromatogr. A. 704, 315–321.

    Article  PubMed  CAS  Google Scholar 

  9. Rogers, J.A., and Choi, Y.W. (1993) The Liposome Partitioning System for Correlating Biological Activities of Imidazolidine Derivatives, Pharm. Res. 10, 913–917.

    Article  PubMed  CAS  Google Scholar 

  10. Wenk, M.R., Fahr, A., Reszka, R., and Seelig, J. (1996) Paclitaxel Partitioning into Lipid Bilayers, J. Pharm. Sci. 85, 228–231.

    Article  PubMed  CAS  Google Scholar 

  11. Welti, R., Mullikin, L.J., Yoshimura, T., and Helmkamp, G.M., Jr. (1984) Partition of Amphiphilic Molecules into Phospholipid Vesicles and Human Erythrocyte Ghosts: Measurements by Ultraviolet Difference Spectroscopy, Biochemistry 23, 6086–6091.

    Article  PubMed  CAS  Google Scholar 

  12. Kitamura, K., Imayoshi, N., Goto, T., Shiro, H., Mano, T., and Nakai, Y. (1995) Second Derivative Spectrophotometric Determination of Partition Coefficients of Chlorpromazine and Promazine Between Lecithin Bilayer Vesicles and Water, Anal. Chim. Acta 304, 101-106.

    Article  CAS  Google Scholar 

  13. Kitamura, K., and Imayoshi, N. (1992) Second-Derivative Spectrophotometric Determination of the Binding Constant Between Chlorpromazine and β-Cyclodextrin in Aqueous Solutions, Anal. Sci. 8, 497–501.

    CAS  Google Scholar 

  14. Conrad, M.J., and Singer, S.J. (1981) The solubility of Amphipathic Molecules in Biological Membranes and Lipid Bilayers and Its Implications for Membrane Structure. Biochemistry 20, 808–818.

    Article  PubMed  CAS  Google Scholar 

  15. Luxnat, M., Muller, H.J. and Galla, H.-J. (1984) Membrane Solubility of Chlorpromazine. Hygroscopic Desorption and Centrifugation Methods Yield Comparable Results, Biochem. J. 224, 1023.

    PubMed  CAS  Google Scholar 

  16. Gürsoy, A., and Senyücel, B. (1997) Characterization of Ciprofloxacin Liposomes: Derivative Ultaviolet Spectrophotometric Determinations, J. Microencapulatron 14, 769–776.

    Article  Google Scholar 

  17. Hwang, S., and Shen, T.Y. (1981) Membrane Effects of Antiinflammatory Agents. 2. Interaction of Nonsteroidal Antiinflammatory Drugs with Liposome and Purple Membranes, J. Med. Chem. 24, 1202–1211.

    Article  PubMed  CAS  Google Scholar 

  18. Lasic, D.D. (1993) Liposomes from Physics to Applications, Elsevier, Amsterdam.

    Google Scholar 

  19. Gran, G. (1952) Determination of the Equivalence Point in Potentiometric Titration. Part II, Analyst 77, 661–671.

    Article  CAS  Google Scholar 

  20. McClare, C.W.F. (1971) An Accurate and Convenient Organic Phosphorus Assay, Anal. Biochem. 9, 527–530.

    Article  Google Scholar 

  21. Leggett, D.J., and MacBryde, W.A.E. (1975) General Computer Program for the Computation of Stability Constants from Absorbance Data, Anal. Chem. 47, 1065–1070.

    Article  CAS  Google Scholar 

  22. Schreier, S., Frezzatti, W.A., Jr., Araújo, P.S., Chaimovich, H., and Cuccovia, I. (1984) Effect of Lipid Membranes on the Apparent pK of the Local Anesthetic Tetracaine. Spin Label and Titration Studies, Biochim. Biophys. Acta 769, 231–237.

    Article  PubMed  CAS  Google Scholar 

  23. Pramauro, E., and Pelizzetti, E. (1981) Effect of Micellar Systems on the Equilibrium of Chemical Reactions, Anal. Chim. Acta 126, 253–257.

    Article  CAS  Google Scholar 

  24. Berezin, I.V., Martinek, K., and Yatsimirskii, A.K. (1973) Physicochemical Foundations of Micellar Catalysis, Russian Chem. Rev. 42, 787–802.

    Article  Google Scholar 

  25. Castro, B., Gameiro, P., Guimarães, C., Lima, J.L.F.C., and Reis, S. (1998) Acid/Base Properties of β-Blockers and Benzodiazepines in Sodium Dodecyl Sulfate Micelles. A Spectrophotometric and Potentiometric Study, J. Pharm. Sci. 87, 356–359.

    Article  PubMed  Google Scholar 

  26. Quina, F.H., and Chaimovich, H. (1979) Ion Exchange in Micellar Solutions. 1. Conceptual Framework for Ion Exchange in Micellar Solutions, J. Phys. Chem. 83, 1844–1850.

    Article  CAS  Google Scholar 

  27. Romsted, L.S. (1985) Quantitative Treatment of Benzimidazole Deprotonation Equilibria in Aqueous Micellar Solutions of Cetyltrimethylammonium Ion (CTAX, X/t- = Cl/t-, Br, and NO -3 ) Surfactants. 1. Variable Surfactant Concentration, J. Phys. Chem. 89, 5107–5113.

    Article  CAS  Google Scholar 

  28. White, S.H., Jacobs, R.E., and King, G.I. (1987) Partial Specific Volumes of Lipid and Water in Mixtures of Egg Lecithin and Water, Biophys. J. 52, 663–665.

    Article  PubMed  CAS  Google Scholar 

  29. Cordero, J.A., Alarcon, L., Escribano, E., Obach, R., and Domenech, J. (1997) A Comparative Study of the Transdermal Penetration of a Series of Nonsteroidal Antiinflammatory Drugs, J. Pharm. Sci. 86, 503–508.

    Article  PubMed  CAS  Google Scholar 

  30. Issopoulos, P.B. (1995) Analysis of Various Very Slightly Water-Soluble Drugs in Micellar Medium. I. Potentiometric and Visual Determination of Non-steroidal Anti-inflammatory Therapeutic Agents, Anal. Lett. 28, 861–879.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salette Reis.

About this article

Cite this article

de Castro, B., Gameiro, P., Lima, J.L.F.C. et al. A Fast and reliable spectroscopic method for the determination of membrane-water partition coefficients of organic compounds. Lipids 36, 89–96 (2001). https://doi.org/10.1007/s11745-001-0673-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-001-0673-0

Keywords

Navigation