Skip to main content
Log in

In vitro behavior of marine lipid-based liposomes. Influence of pH, temperature, bile salts, and phospholipase A2

  • Published:
Lipids

Abstract

To deliver polyunsaturated fatty acids (PUFA) by the oral route, liposomes based on a natural mixture of marine lipids were prepared by filtration and characterized in media that mimic gastrointestinal fluids. First the influence of large pH variations from 1.5–2.5 (stomach) to 7.4 (intestine) at the physiological temperature (37°C) was investigated. Acidification of liposome suspensions induced instantaneous vesicle aggregation, which was partially reversible when the external medium was further neutralized. Simultaneously, complex morphological bilayer rearrangements occurred, leading to the formation of small aggregates. These pH- and temperature-dependent structural changes were interpreted in terms of osmotic shock and lipid chemical alterations, i.e., oxidation and hydrolysis, especially in the first hours of storage. Besides, oxidative stability was closely related to the state of liposome aggregation and the supramolecular organization (vesicles or mixed micelles). The effects of bile salts and phospholipase A2 (PLA2) on the liposome structures were also studied. Membrane solubilization by bile salts was favored by preliminary liposome incubation in acid conditions. PLA2 showed a better activity on liposome structures than on the corresponding mixed lipid-bile salt micelles. As a whole, in spite of slight morphological modifications, vesicle structures were preserved after an acid stress and no lipid oxidation products were detected during the first 5 h of incubation. Thus, marine lipids constituted an attractive material for the development of liposomes as potential oral PUFA supplements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BS:

bile salt

cmc:

critical micellar concentration

DHA:

docosahexaenoic acid

EPA:

eicosapentaenoic acid

GC:

gas chromatography

GEC:

gel exclusion chromatography

LPC:

lysophosphatidylcholine

LPL:

lysophosphatidylethanolamine

OD:

optical density

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PLA2 :

phospholipase A2

PL:

phospholipids

PUFA:

polyunsaturated fatty acids

QELS:

quasi-elastic light scattering

TG:

triglycerides

TLC:

thin-layer chromatography

References

  1. Lasic, D.D. (1993) Liposomes: From Physics to Applications, p. 575, Elsevier, Amsterdam.

    Google Scholar 

  2. Rogers, J.A., and Anderson, K.E. (1998) The Potential of Liposomes in Oral Drug Deliver, Crit. Rev. Ther. Drug Carrier Syst. 15, 321–480.

    Google Scholar 

  3. Nestel, P.J. (2000) Fish Oil and Cardiovascular Disease: Lipids and Arterial Function, Am. J. Clin. Nutr. 71, 228S-231S.

    PubMed  CAS  Google Scholar 

  4. Kremer, J.M. (2000) n−3 Fatty Acid Supplements in Rheumatoid Arthritis, Am. J. Clin. Nutr. 71, 349S-351S.

    PubMed  CAS  Google Scholar 

  5. Lawson, L.D., and Hughes, B.G. (1988) Human Absorption of Fish Oil Fatty Acids as Triacylglycerols, Free Fatty Acids or Ethyl Ester, Biochem. Biophys. Res. Commun. 152, 328–335.

    Article  PubMed  CAS  Google Scholar 

  6. Carnielli, V., Verlato, G., Perderzini, F., Luijendijk, I., Boerlage, A., Pedrotti, D., and Sauer, P. (1998) Intestinal Absorption of Long-Chain Polyunsaturated Fatty Acids in Preterm Infants Fed Breast Milk or Formula, Am. J. Clin. Nutr. 67, 97–103.

    PubMed  CAS  Google Scholar 

  7. Baudimant, G., Maurice, M., Landrein, A., Durand, G., and Durand, P. (1996) Purification of Phosphatidylcholine with High Content of DHA from Squid Illex argentinus by Countercurrent Chromatography, J. Liq. Chrom. Rel. Technol. 19, 1793–1804.

    CAS  Google Scholar 

  8. Nacka, F., Cansell, M., Gouygou, J.P., Gerbeaud, C., Méléard, P., and Entressangles, B., Physical and Chemical Stability of Marine Lipid-Based Liposomes under Acid Conditions, Colloids Surf. B: Biointerfaces, in press.

  9. Heuman, D. (1997) Distribution of Mixtures of Bile Salt Taurine Conjugates Between Lecithin-Cholesterol Vesicles and Aqueous Media: an Empirical Model, J. Lipid Res. 38, 1217–1228.

    PubMed  CAS  Google Scholar 

  10. Ames, B.N. (1966) Assay of Inorganic Phosphate, Total Phosphate and Phosphatase, Methods Enzymol. 18, 115–118.

    Article  Google Scholar 

  11. Olson, F., Hunt, C.A., Szoka, F.C., Vail, W.J., and Papahadjopoulos, D. (1979) Preparation of Liposomes of Defined Size Distribution by Extrusion Through Polycarbonate Membranes, Biochim. Biophys. Acta 557, 9–23.

    Article  PubMed  CAS  Google Scholar 

  12. Lichtenberg, D. (1985) Characterization of the Solubilization of Lipid Bilayers by Surfactants, Biochim. Biophys. Acta 821, 470–478.

    Article  PubMed  CAS  Google Scholar 

  13. Walter, A., Vinson, P.K., Kaplun, A., and Talmon, Y. (1991) Intermediate Structures in the Cholate-Phosphatidylcholine Vesicle-Micelle Transition, Biophys. J. 60, 1315–1325.

    Article  CAS  PubMed  Google Scholar 

  14. Paternostre, M.T., Roux, M., and Rigaud, J.L. (1988) Mechanisms of Membrane Protein Insertion into Liposomes During Reconstitution Procedures Involving the Use of Detergents. I. Solubilization of Large Unilamellar Liposomes (prepared by reverse-phase evaporation) by Triton X-100, Octyl Glucoside and Sodium Cholate, Biochemistry, 27, 2668–2677.

    Article  PubMed  CAS  Google Scholar 

  15. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957) A Simple Method for Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  16. Frankel, E.N., and Tappel, A.L. (1991) Headspace Gas Chromatography of Volatile Lipid Peroxidation Products from Human Red Blood Cell Membranes, Lipids 26, 479–484.

    PubMed  CAS  Google Scholar 

  17. Fullington, D.A., Shoemaker, D.G., and Nichols, J.W. (1990) Characterization of Phospholipid Transfer Between Mixed Phospholipids—Bile Salt Micelles, Biochemistry 29, 879–886.

    Article  PubMed  CAS  Google Scholar 

  18. Grit, M., and Crommelin, D.J.A. (1993) Chemical Stability of Liposomes: Implications for Their Physical Stability, Chem. Phys. Lipids 64, 3–18.

    Article  PubMed  CAS  Google Scholar 

  19. Ohyashiki, T., Karino, T., and Matsui, K. (1993) Stimulation of Fe2+-Induced Lipid Peroxidation in Phosphatidylcholine Liposomes by Aluminium Ions at Physiological pH, Biochim. Biophys. Acta 1170, 182–188.

    PubMed  CAS  Google Scholar 

  20. Berg, O.G., Yu, B.Z., Rogers, J., and Jain, M.K. (1991) Interfacial Catalysis by Phospholipase A2: Determination of the Interfacial Kinetic Rate Constants, Biochemistry 30, 7283–7297.

    Article  PubMed  CAS  Google Scholar 

  21. Burack, W.R., Dibble, A.R.G., Allietta, M.M., and Biltonen, R.L. (1997) Changes in Vesicle Morphology Induced by Lateral Phase Separation Modulate Phospholipase A2 Activity, Biochemistry 36, 10551–10557.

    Article  PubMed  CAS  Google Scholar 

  22. Zuidam, N.J., Gouw, H.K.M.E., Barenholz, Y., and Crommelin, D.J.A. (1995) Physical (In)stability of Liposomes upon Chemical Hydrolysis: the Role of Lysophospholipids and Fatty Acids, Biochim. Biophys. Acta 1240, 101–110.

    Article  PubMed  Google Scholar 

  23. Hofmann, A.F. (1976) Fat Digestion: the Interaction of Lipid Digestion Products with Micellar Bile Acid Solutions, in Lipid Absorption: Biochemical and Clinical Aspects (Rommel, K., and Bohmer, R., eds.), pp. 3–18, MTP Press, Lancaster.

    Google Scholar 

  24. Ouadahi, S., Paternostre, M., André, C., Genin, I., Thao, T.X., Puisieux, F., Devissaguet, J.P., and Barratt, G. (1998) Liposomal Formulations for Oral Immunotherapy: In-Vitro Stability in Synthetic Intestinal Media and In-Vivo Efficacy in the Mouse, J. Drug Target. 5, 365–378.

    Article  PubMed  CAS  Google Scholar 

  25. Lasch, J. (1995) Interaction of Detergents with Lipid Vesicles, Biochim. Biophys. Acta 1241, 269–292.

    PubMed  Google Scholar 

  26. Schubert, R., Beyer, K., Wolburg, H., and Schmidt, K.H. (1986) Structural Changes in Membranes of Large Unilamellar Vesicles After Binding of Sodium Cholate, Biochemistry 25, 5263–5269.

    Article  PubMed  CAS  Google Scholar 

  27. Mazer, N., Benedek, G., and Carey, M. (1980) Quasielastic Light Scattering Studies of Aqueous Biliary Lipid Systems. Mixed Micelles Formation in Bile Salt—Lecithin Solutions, Biochemistry 19, 601–615.

    Article  PubMed  CAS  Google Scholar 

  28. da Graca Miguel, M., Eidelman, O., Ollivon, M., and Walter, A. (1989) Temperature Dependence of the Vesicle-Micelle Transition of Egg Phosphatidylcholine and Octylglucoside, Biochemistry 28, 8921–8928.

    Article  PubMed  Google Scholar 

  29. Massari, S., Folena, E., Ambrosin, V., Schiavo, G., and Colonna, R. (1991) pH-Dependent Lipid Packing, Membrane Permeability and Fusion in Phosphatidylcholine Vesicles, Biochim. Biophys. Acta 1067, 131–138.

    Article  PubMed  CAS  Google Scholar 

  30. Vermehren, C., Kiebler, T., Hylander, I., Callisen, T.H., and Jorgensen, K. (1998) Increase in Phospholipase A2 Activity Towards Lipopolymer-Containing Liposomes, Biochim. Biophys. Acta 1373, 27–36.

    Article  PubMed  CAS  Google Scholar 

  31. Sen, A., Isac, T.V., and Hui, S.W. (1991) Bilayer Packing Stress and Defects in Mixed Dilinoylphosphatidylethanolamine and Palmitoyloleoylphosphatidylcholine and Their Susceptibility to Phospholipase A2, Biochemistry 30, 4516–4521.

    Article  PubMed  CAS  Google Scholar 

  32. Ghomashchi, F., Yu, B.Z., Berg, O., Jain, M.K., and Gelb, M.H. (1991) Interfacial Catalysis by Phospholipase A2: Substrate Specificity in Vesicles, Biochemistry 30, 7318–7329.

    Article  PubMed  CAS  Google Scholar 

  33. Lichtenbergova, L., Yoon, E.T., and Cho, W. (1998) Membrane Penetration of Cytosolic Phospholipase A2 Is Necessary for Its Interfacial Catalysis and Arachidonate Specificity, Biochemistry 37, 14128–14136.

    Article  PubMed  CAS  Google Scholar 

  34. Zidovetzki, R., Laptalo, L., and Crawford, J. (1992) Effects of Diacylglycerols on the Activity of Cobra Venom, Bee Venom and Pig Pancreatic Phospholipase A2, Biochemistry 31, 7683–7691.

    Article  PubMed  CAS  Google Scholar 

  35. Sheffield, M.J., Baker, B.L., Li, D., Owen, N.L., Baker, M.L., and Bell, J.D. (1995) Enhancement of Agkistrodon piscivorus Venom Phospholipase A2 Activity Toward Phosphatidylcholine Vesicles by Lysolecithin and Palmitic Acid: Studies with Fluorescent Probes of Membrane Structure, Biochemistry 34, 7796–7806.

    Article  PubMed  CAS  Google Scholar 

  36. Burack, W.R., Gadd, M.E., and Biltonen, R.L. (1995) Modulation of Phospholipase A2: Identification of an Inactive Membrane-Bound State, Biochemistry 34, 14819–14828.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maud Cansell.

About this article

Cite this article

Nacka, F., Cansell, M. & Entressangles, B. In vitro behavior of marine lipid-based liposomes. Influence of pH, temperature, bile salts, and phospholipase A2 . Lipids 36, 35–42 (2001). https://doi.org/10.1007/s11745-001-0665-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-001-0665-0

Keywords

Navigation