Skip to main content
Log in

Influence of fatty alcohol and other fatty acid derivatives on fatty acid uptake into rat intestinal epithelial cells

  • Published:
Lipids

Abstract

We investigated the influence of various substrates on the uptake of long-chain fatty acid into IEC-6, rat intestinal epithelial cell line. The uptake of [3H]oleic acid into IEC-6 cells was a saturable function of the oleic acid concentration. Long-chain fatty acids significantly inhibited the oleic acid uptake into IEC-6 cells and shorter-chain fatty acids had little or no effect. Various fatty acid esters suppressed the oleic acid uptake into IEC-6. Fatty alcohols also inhibited oleic acid uptake into IEC-6 and the length of the carbon chain played an important role. These results suggest that long-chain fatty acid uptake was inhibited by the substrates which had a structure similar to long-chain fatty acids, especially those with a long carbon chain. At least two molecules, fatty acid translocase and fatty acid transport protein type 4, which are considered to be involved in the long-chain fatty acid transport into the cell, were expressed on IEC-6 cells, supporting the existence of the carrier-mediated system of long-chain fatty acid transport on IEC-6 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

FABPpm:

plasma membrane fatty acid-binding protein

FAT:

fatty acid translocase

FATP4:

fatty acid transport protein type 4

HBSS:

Hanks' balanced salt solution

PCR:

polymerase chain reaction

RT:

reverse transcription

TC:

sodium taurocholate

References

  1. Stremmel, W., (1988) Uptake of Fatty Acids by Jejunal Mucosal Cells Is Mediated by a Fatty Acid Binding Membrane Protein, J. Clin. Invest. 82, 2001–2010.

    PubMed  CAS  Google Scholar 

  2. Gore, J., and Hoinard, C. (1993) Linolenic Acid Transport in Hamster Intestinal Cells Is Carrier-Mediated, J. Nutr. 123, 66–73.

    PubMed  CAS  Google Scholar 

  3. Abumrad, N.A., Park, J.H., and Park, C.R. (1984) Permeation of Long-Chain Fatty Acid into Adipocytes. Kinetics, Specificity, and Evidence for Involvement of a Membrane Protein. J. Biol. Chem. 259, 8945–8953.

    PubMed  CAS  Google Scholar 

  4. Stremmel, W., Strohmeyer, G., Borchard, F., Kochwa, S., and Berk, P.D. (1985) Isolation and Partial Characterization of a Fatty Acid Binding Protein in Rat Liver Plasma Membranes, Proc. Natl. Acad. Sci. USA 82, 4–8.

    Article  PubMed  CAS  Google Scholar 

  5. Sorrentino, D., Stump, D.D., Van Ness, K., Simard, A., Schwab, A.J., Zhou, S.-L., Goresky, C.A., and Berk, P.D. (1996) Oleate Uptake by Isolated Hepatocytes and the Perfused Rat Liver Is Competitively Inhibited by Palmitate, Am. J. Physiol. 270, G385–G392.

    PubMed  CAS  Google Scholar 

  6. Stremmel, W., Lotz, G., Strohmeyer, G., and Berk, P.D. (1985) Identification, Isolation, and Partial Characterization of a Fatty Acid Binding Protein from Rat Jejunal Microvillous Membranes, J. Clin. Invest. 75, 1068–1076.

    Article  PubMed  CAS  Google Scholar 

  7. Abumrad, N.A., El-Maghrabi, M.R., Amri, E.-Z., Lopez, E., and Grimaldi, P.A. (1993) Cloning of a Rat Adipocyte Membrane Protein Implicated in Binding or Transport of Long-Chain Fatty Acids That Is Induced During Preadipocyte Differentiation. Homology with Human CD36. J. Biol. Chem. 268, 17665–17668.

    PubMed  CAS  Google Scholar 

  8. Poirier, H., Degrace, P., Niot, I., Bernard, A., and Besnard, P. (1996) Localization and Regulation of the Putative Membrane Fatty-Acid Transporter (FAT) in the Small Intestine. Comparison with Fatty Acid-Binding Proteins (FABP), Eur. J. Biochem. 238, 368–373.

    Article  PubMed  CAS  Google Scholar 

  9. Stahl, A., Hirsch, D.J., Gimeno, R.E., Punreddy, S., Ge, P., Watson, N., Patel, S., Kotler, M., Raimondi, A., Tartaglia, L.A., and Lodish, H.F. (1999) Identification of the Major Intestinal Fatty Acid Transport Protein, Mol. Cell 4, 299–308.

    Article  PubMed  CAS  Google Scholar 

  10. Stump, D.D., Zhou, S.L., and Berk, P.D. (1993) Comparison of Plasma Membrane FABP and Mitochondrial Isoform of Aspartate Aminotransferase from Rat Liver, Am. J. Physiol. 265, G894-G902.

    PubMed  CAS  Google Scholar 

  11. Schaffer, J.E., and Lodish, H.F. (1994) Expression Cloning and Characterization of a Novel Adipocyte Long Chain Fatty Acid Transport Protein, Cell 79, 427–436.

    Article  PubMed  CAS  Google Scholar 

  12. Quaroni, A., Wands, J., Trelstad, R.L., and Isselbacher, K.J. (1979) Epithelioid Cell Cultures from Rat Small Intestine, J. Cell Biol. 80, 248–265.

    Article  PubMed  CAS  Google Scholar 

  13. Trotter, P.J., Ho, S.Y., and Storch, J. (1996) Fatty Acid Uptake by Caco-2 Human Intestinal Cells, J. Lipid Res. 37, 336–346.

    PubMed  CAS  Google Scholar 

  14. Bradford, M.M. (1976) A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  15. Shintani, T., Takahashi, N., Fushiki, T., Kotera, J., and Sugimoto, E. (1995) Recognition System for Dietary Fatty Acids in the Rat Small Intestine, Biosci. Biotechnol. Biochem. 59, 1428–1432.

    PubMed  CAS  Google Scholar 

  16. Kruskal, W.H., and Wallis, W.A. (1952) Use of Ranks in One-Criterion Variance Analysis, J. Am. Stat. Assoc. 47, 583–621.

    Article  Google Scholar 

  17. Mann, H.B., and Whitney, D.R. (1947) On a Test of Whether One of Two Random Variables Is Stochastically Larger Than the Other, Ann. Math. Stat. 18, 50–60.

    Google Scholar 

  18. Gore, J., Hoinard, C., and Couet, C. (1994) Linoleic Acid Uptake by Isolated Enterocytes: Influence of α-Linolenic Acid on Absorption, Lipids 29, 701–706.

    PubMed  CAS  Google Scholar 

  19. Shintani, T., Takahashi, N., Fushiki, T., and Sugimoto, E. (1995) The Recognition System of Dietary Fatty Acids by the Rat Small Intestinal Cells, Biosci. Biotech. Biochem. 59, 479–481.

    Article  CAS  Google Scholar 

  20. Tranchant, T., Besson, P., Hoinard, C., Delarue, J., Antonie, J.M., Couet, C., and Gore, J. (1997) Mechanisms and Kinetics of α-Linolenic Acid Uptake in Caco-2 Clone TC7, Biochim. Biophys. Acta 1345, 151–161.

    PubMed  CAS  Google Scholar 

  21. Bauermeister, A., and Sargent, J.R. (1979) Wax Esters: Major Metabolites in the Marine Environment, Trends Biochem. Sci. 4, 209–212.

    Article  CAS  Google Scholar 

  22. Scora, R.W., Müller, E., and Gülz, P.-G. (1986) Wax components of Asparagus officinalis L. (Liliaceae), J. Agric. Food. Chem. 34, 1024–1026.

    Article  CAS  Google Scholar 

  23. Murota, K., Kawada, T., Matsui, N., Sakakibara, M., Takahashi, N., and Fushiki, T. (2000) Oleyl Alcohol Inhibits Intestinal Long-Chain Fatty Acid Absorption in Rats, J. Nutr. Sci. Vitaminol. 46, 302–308.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Fushiki.

About this article

Cite this article

Murota, K., Matsui, N., Kawada, T. et al. Influence of fatty alcohol and other fatty acid derivatives on fatty acid uptake into rat intestinal epithelial cells. Lipids 36, 21–26 (2001). https://doi.org/10.1007/s11745-001-0663-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-001-0663-2

Keywords

Navigation