Skip to main content
Log in

Changes in fatty acid composition in plant tissues expressing a mammalian Δ9 desaturase

  • Article
  • Published:
Lipids

Abstract

Plant tissues expressing a mammalian stearoyl-CoA Δ9 desaturase were reported to accumulate Δ9 hexadecenoic acid (16∶1), normally very minor in most plant tissues. The transgenic plants were thoroughly analyzed for alterations of individual lipids in different subcellular sites. Western blot analysis indicated that the animal desaturase was targeted to the microsomes. The Δ9 16∶1 was incorporated into both the sn-1 and sn-2 positions of all the major membrane lipids tested, indicating that the endoplasmic reticulum acyltransferases do not exclude unsaturated C16 fatty acids from the sn-2 position. In addition to increases in monounsaturated and decreases in saturated fatty acids, accumulation of 16∶1 was accompanied by a reduction in 18∶3 in all the lipids tested except phosphatidylglycerol, and increases in 18∶2 in phospholipids. Total C16 fatty acid content in the galactolipids of the transgenics was significantly higher than that in the control, but those in the phospholipids were unchanged. In transgenics, Δ11 18∶1 was detected in the sn-1 position of the lipids tested except phosphatidylinositol and phosphatidylserine. Introduction of the animal desaturase, controlled by a seed-specific phaseolin promoter, into soybean somatic embryo resulted in a significant reduction in saturated fatty acids. Such effects were greater in cotyledons than hypocotyl-radicles. This study demonstrated that the animal desaturase can be used to decrease the levels of saturated fatty acids in a crop plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACP:

acyl carrier protein

BHT:

butylated hydroxytoluene

C n fatty acid(s):

fatty acid(s) with n carbon atoms

DGD:

digalactosyldiacylglycerol

ER:

endoplasmic reticulum

GC:

gas chromatography

KAS:

3-ketoacyl-ACP synthase

LPAAT:

lysophosphatidic acid acyltransferase

MGD:

monogalactosyldiacylglycerol

MS:

mass spectrometry

PA:

phosphatidic acid

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PG:

phosphatidylglycerol

PI:

phosphatidylinositol

PS:

phosphatidylserine

RDS:

rat liver stearoyl-CoA Δ9 desaturase

SDS:

sodium dodecyl sulfate

X/Y:

a fatty acyl group containing X carbon atoms and Y cis double bonds

UV:

ultraviolet

References

  1. Somerville, S., and Browse, J. (1991) Plant Lipids: Metabolism, Mutants, and Membranes, Science 252, 80–87.

    Article  CAS  PubMed  Google Scholar 

  2. Schmidt, H., and Heinz, E. (1990) Involvement of Ferredoxin in Desaturation of Lipid-Bound Oleate in Chloroplasts, Plant Physiol. 94, 214–220.

    PubMed  CAS  Google Scholar 

  3. Smith, M.A., Cross, A.R., Jones, O.T.G., Griffiths, W.T., Stymne, S., and Stobart, K. (1990) Electron-Transport Components of the 1-Acyl-2-oleoyl-sn-glycero-3-phosphocholine Δ12-Desaturase (Δ12-desaturase) in Microsomal Preparations from Developing Safflower (Carthamus tinctorius L.) Cotyledons, Biochem. J. 272, 23–29.

    PubMed  CAS  Google Scholar 

  4. Kearns, E.V., Hugly, S., and Somerville, C. (1991) The Role of Cytochrome b5 in Δ12 Desaturation of Oleic Acid by Microsomes of Safflower (Carthamus tinctorius L.), Arch. Biochem. Biophys. 284, 431–436.

    Article  PubMed  CAS  Google Scholar 

  5. Browse, J., and Somerville, C. (1991) Glycerolipid Synthesis: Biochemistry and Regulation, Annu. Rev. Plant. Physiol. 42, 467–506.

    Article  CAS  Google Scholar 

  6. Frentzen, M., Heinz, E., Mckeon, T.A., and Stumpf, P.K. (1983) Specificities and Selectivities of Glycerol-3-phosphate Acyltransferase and Monoacylglycerol-3-phosphate Acyltransferase from Pea and Spinach Chloroplasts, Eur. J. Biochem. 129, 629–636.

    Article  PubMed  CAS  Google Scholar 

  7. Frentzen, M. (1993) Acyltransferases and Triacylglycerols, in Lipid Metabolism in Plants (Moore, T.S., Jr., ed.) pp. 195–231, CRC Press, Boca Raton.

    Google Scholar 

  8. Polashock, J.J., Chin, C.-K., and Martin, C.E. (1992) Expression of the Yeast Δ-9 Fatty Acid Desaturase in Nicotiana tabacum, Plant Physiol. 100, 894–901.

    PubMed  CAS  Google Scholar 

  9. Ohlrogge, J., and Browse, J. (1995) Lipid Biosynthesis, Plant Cell 7, 957–970.

    Article  PubMed  CAS  Google Scholar 

  10. Schnebly, S.R., and Fehr, W.R. (1993) Effect of Years and Planting Dates on Fatty Acid Composition of Soybean Genotypes, Crop Sci. 33, 716–719.

    Article  CAS  Google Scholar 

  11. Sizer, F., and Whitney, E. (1994) Nutrition Concepts and Controversies, 6th edn., West Publishing Co., St. Paul, MN.

    Google Scholar 

  12. Grayburn, W.S., Collins, G.B., and Hildebrand, D.F. (1992) Fatty Acid Alteration by a Δ9 Desaturase in Transgenic Tobacco Tissue, Biotechnology 10, 675–678.

    Article  PubMed  CAS  Google Scholar 

  13. Liu, W., Torisky, R.S., McAllister, K.P., Avdiushko, S., Hildebrand, D., and Collins, G.B. (1996) Somatic Embryo Cycling: Evaluation of a Novel Transformation and Assay System for Seed-Specific Gene Expression in Soybean, Plant Cell Tissue Organ Cult. 47, 33–42.

    Article  CAS  Google Scholar 

  14. Liu, W., Moore, P.J., and Collins, G.B. (1992) Somatic Embryogenesis in Soybean via Somatic Embryo Cycling, In Vitro Cell Dev. Biol. 28P, 153–160.

    Google Scholar 

  15. Dahmer, M.L., Fleming, P.D., Collins, G.B., and Hildebrand, D.F. (1989) A Rapid Screening Technique for Determining the Lipid Composition of Soybean Seeds, J. Am. Oil Chem. Soc. 66, 543–548.

    CAS  Google Scholar 

  16. Miquel, M., and Browse, J. (1992) Arabidopsis Mutants Deficient in Polyunsaturated Fatty Acid Synthesis: Biochemical and Genetic Characterization of a Plant Oleoyl-Phosphatidylcholine Desaturase, J. Biol. Chem. 267, 1502–1509.

    PubMed  CAS  Google Scholar 

  17. Khan, M.-U., and Williams, J.P. (1977) Improved Thin-Layer Chromatographic Method for the Separation of Major Phospholipids and Glycerolipids from Plant Lipid Extracts and Phosphatidylglycerol and bis (monoacylglyceryl) Phosphate from Animal Lipid Extracts, J. Chromatogr. 140, 179–185.

    Article  PubMed  CAS  Google Scholar 

  18. Yamamoto, K., Shibahara, A., Nakayama, T., and Kajimoto, G. (1991) Determination of Double-Bond Position in Methylene-Interrupted Dienoic Fatty Acids by GC-MS as Their Dimethyl Disulfide Adducts, Chem. Phys. Lipids 60, 39–50.

    Article  CAS  Google Scholar 

  19. Fischer, W., Heinz, E., and Zeus, M. (1973) The Suitability of Lipase from Rhizopus arrhizus delemar for Analysis of Fatty Acid Distribution in Dihexosyl Diglycerides, Phospholipids and Plant Sulfolipids, Hoppe-Seyler's Z. Physiol. Chem. 354, 1115–1123.

    PubMed  CAS  Google Scholar 

  20. Lord, J.M., Kagawa, T., and Beevers, H. (1972) Intracellular Distribution of Enzymes of the Cytidine Diphosphate Choline Pathway in Castor Bean Endosperm, Proc. Natl. Acad. Sci. USA 69, 2429–2432.

    Article  PubMed  CAS  Google Scholar 

  21. Roughan, P.G., Holland, R., and Slack, C.R. (1980) The Role of Chloroplasts and Microsomal Fractions in Polar-Lipid Synthesis from [1-14C]Acetate by Cell-Free Preparations from Spinach (Spinacia oleracea) Leaves, Biochem. J. 188, 17–24.

    PubMed  CAS  Google Scholar 

  22. Tolbert, N.E. (1974) Isolation of Subcellular Organelles of Metabolism on Isopycnic Sucrose Gradients, Methods Enzymol. 31, 734–746.

    Article  PubMed  CAS  Google Scholar 

  23. Arnon, D.I. (1947) Copper Enzymes in Isolated Chloroplasts: Polyphenoloxidase in Beta vulgaris, Plant Physiol. 24, 1–15.

    Google Scholar 

  24. Grayburn, W.S., and Hildebrand, D.F. (1995) Progeny Analysis of Tobacco That Express a Mammalian Δ9 Desaturase, J. Am. Oil Chem. Soc. 72, 317–321.

    CAS  Google Scholar 

  25. Holloway, P.W. (1983) Fatty Acid Desaturation, in The Enzymes (Boyer, P.D., ed.) Vol. 16, pp. 63–83, Academic, New York.

    Google Scholar 

  26. Browse, J., Warwick, N., Somerville, C.R., and Slack, C.R. (1986) Fluxes Through the Prokaryotic and Eukaryotic Pathways of Lipid Synthesis in the “16∶3” Plant Arabidopsis thaliana, Biochem. J. 235, 25–31.

    PubMed  CAS  Google Scholar 

  27. Roughan, P.G., and Slack, C.R. (1982) Cellular Organization of Glycerolipid Metabolism, Annu. Rev. Plant Physiol. 33, 97–132.

    Article  CAS  Google Scholar 

  28. Nishida, I., and Murata, N. (1996) Chilling Sensitivity in Plants and Cyanobacteria: The Crucial Contribution of Membrane Lipids, Annu. Rev. Plant Physiol. 47, 541–546.

    Article  CAS  Google Scholar 

  29. Enoch, H.G., Catala, A., and Strittmatter, P. (1976) Mechanism of Rat Liver Microsomal Stearyl-CoA Desaturase: Studies of the Substrate Specificity, Enzyme-Substrate Interactions, and the Function of Lipid, J. Biol. Chem. 251, 5095–5103.

    PubMed  CAS  Google Scholar 

  30. Mckeon, T.A., and Stumpf, P.K. (1982) Purification and Characterization of the Stearoyl-Acyl Carrier Protein Desaturase and the Acyl-Acyl Carrier Protein Thioesterase from Maturing Seeds of Safflower, J. Biol. Chem. 257, 12141–12147.

    PubMed  CAS  Google Scholar 

  31. Williamson, J.D., Hirsch-Wyncott, M.E., Larkins, B.A., and Gelvin, S.B. (1989) Differential Accumulation of a Transcript Driven by the CaMV 35S Promoter in Transgenic Tobacco, Plant Physiol. 90, 1570–1576.

    Article  PubMed  CAS  Google Scholar 

  32. Shibahara, A., Yamamoto, K., Takeoka, M., Kinoshita, A., Kajimoto, G., Nakayama, T., and Noda, M. (1989) Application of a GC-MS Method Using Deuterated Fatty Acids for Tracing cis-Vaccenic Acid Biosynthesis in Kaki Pulp, Lipids24, 488–493.

    CAS  Google Scholar 

  33. Shibahara, A., Yamamoto, K., Takeoka, M., Kinoshita, A., Kajimoto, G., Nakayama, T., and Noda, M. (1990) Novel Pathways of Oleic and cis-Vaccenic Acid Biosynthesis by an Enzymatic Double-Bond Shifting Reaction in Higher Plants, FEBS Lett. 264, 228–230.

    Article  PubMed  CAS  Google Scholar 

  34. Ichihara, K., Asahi, T., and Fujii, S. (1987) 1-Acyl-sn-glycerol-3-phosπphate Acyltransferase in Maturing Safflower Seeds and Its Contribution to the Non-Random Fatty Acid Distribution of Triacylglycerol, Eur. J. Biochem. 167, 339–347.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David F. Hildebrand.

About this article

Cite this article

Moon, H., Hazebroek, J. & Hildebrand, D.F. Changes in fatty acid composition in plant tissues expressing a mammalian Δ9 desaturase. Lipids 35, 471–479 (2000). https://doi.org/10.1007/s11745-000-546-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-000-546-6

Keywords

Navigation