Skip to main content

Cholesterol-lowering effects of guar gum: Changes in bile acid pools and intestinal reabsorption

Abstract

Soluble fibers such as guar gum (GG) may exert cholesterol-lowering effects. It is generally accepted that bile acid (BA) reabsorption in portal blood is reduced, thus limiting the capacity of BA to down-regulate liver cholesterol 7α-hydroxylase, the rate-limiting enzyme of BA synthesis. In the present work, rats were adapted to fiber-free (FF) or 5% GG diets (supplemented or not with 0.25% cholesterol), to investigate various aspects of enterohepatic BA cycling. GG in the diet at a level of 5% elicited a significant lowering of plasma cholesterol during the absorptive period, in cholesterol-free (−13%) or 0.25% cholesterol (−20%) diet conditions. In rats adapted to the GG diets, the small intestinal and cecal BA pools and the ileal vein-artery difference for BA were markedly enhanced; reabsorption in the cecal vein was also enhanced in these rats. [14C]Taurocholate absorption, determined in perfused ileal segments, was not significantly different in rats adapted to the FF or GG diet, suggesting that a greater flux of BA in the ileum might support a greater ileal BA reabsorption in rats adapted to the GG diet. In contrast, capacities for [14C]cholate absorption from the cecum at pH 6.5 were higher in rats adapted to the GG diet than to the FF diet. Acidification of the bulk medium in isolated cecum (from pH 7.1 down to pH 6.5 or 5.8) or addition of 100 mM volatile fatty acids was also found to stimulate cecal [14C]cholate absorption. These factors could contribute to accelerated cecal BA absorption in rats fed the GG diet. The effects of GG on steroid fecal excretion thus appear to accompany a greater intestinal BA absorption and portal flux to the liver. These results suggest that some mechanisms invoked to explain cholesterol-lowering effect of fibers should be reconsidered.

This is a preview of subscription content, access via your institution.

Abbreviations

ANOVA:

analysis of variance

ASBT:

active sodium-dependent bile acid transporter

BA:

bile acid

C:

cholate

FF:

fiber-free

GG:

guar gum

Iv-A:

arteriovenous difference

PBS:

phosphate-buffered saline

SCFA:

short-chain fatty acid

TC:

taurocholate

Convention:

steroid=sterols+bile acids (in digestive or fecal samples)

References

  1. 1.

    Glore, S.R., Van Treeck, D., Knehaus, A.W., and Guild, M. (1994) Soluble Fiber and Serum Lipids: A Literature Review, J. Am. Diet. Assoc. 94, 425–436.

    PubMed  CAS  Article  Google Scholar 

  2. 2.

    Fernandez, M.L., Sun, D.M., Tosca, M., and McNamara, D.J. (1995) Guar Gum Effects on Plasma Low-Density Lipoprotein and Hepatic Cholesterol Metabolism in Guinea Pigs Fed Low-and High-Cholesterol Diets: A Dose-Dependent Study, Am. J. Clin. Nutr. 61, 127–134.

    PubMed  CAS  Google Scholar 

  3. 3.

    Truswell, A.S. (1995) Dietary Fibre and Blood Lipids, Curr. Opin. Lipidol. 6, 14–19.

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    Moundras, C., Behr, S.R., Rémésy, C., and Demigné, C. (1997) Fecal Losses of Sterols and Bile Acids Induced by Feeding Rats Guar Gum Are Due to a Greater Pool Size and Liver Bile Acids Secretion, J. Nutr. 127, 1068–1076.

    PubMed  CAS  Google Scholar 

  5. 5.

    Trautwein, E.A., Kunath-Rau, A., and Erbersdobler, E. (1998) Effect of Different Varieties of Pectin and Guar Gum on Plasma, Hepatic and Biliary Lipids and Cholesterol Gallstone Formation in Hamsters Fed on High-Cholesterol Diets, Br. J. Nutr. 79, 463–471.

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    Stedronsky, E.R. (1994) Interaction of Bile Acids and Cholesterol with Non-systemic Agents Having Hypocholesterolemic Properties, Biochim. Biophys. Acta 1210, 255–287.

    PubMed  CAS  Google Scholar 

  7. 7.

    Gee, J.M., Blackburn, N.A., and Johnson, I.T. (1983) The Influence of Guar Gum on Intestinal Cholesterol Transport in the Rat, Br. J. Nutr. 50, 215–224.

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    Phillips, D.R. (1986) The Effect of Guar Gum in Solution on Diffusion of Cholesterol Mixed Micelles, J. Sci. Food Agric. 37, 548.

    Article  Google Scholar 

  9. 9.

    Hofmann, A.F. (1994) in Physiology of the Gastrointestinal Tract (Johnson, L.R., ed.) 3rd edn., pp. 1845–1865, Raven Press, New York.

    Google Scholar 

  10. 10.

    Schneider, B.L., Dawson, P.A., Christie, D-M., Hardikar, W., Wong, M.H., and Suchy, F.J. (1995) Cloning and Molecular Characterization of the Ontogeny of Rat Ileal Sodium-Dependent Bile Acid Transporter, J. Clin. Invest. 95, 745–754.

    Google Scholar 

  11. 11.

    Craddock, A.L., Love, M.W., Daniel, R.W., Kirby, L.C., Walters, H.C., Wong, M.H., and Dawson, P.A. (1998) Expression and Transport Properties of the Human Ileal and Renal Sodium-Dependent Bile Acid Transporter, Am. J. Physiol. 274, G157-G169.

    PubMed  CAS  Google Scholar 

  12. 12.

    Riottot, M., and Sacquet, E. (1985) Increase in the Ileal Absorption Rate of Sodium Taurocholate in Germ-free or Conventional Rats Given an Amylomaize-Starch Diet, Br. J. Nutr. 53, 307–310.

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Lillienau, J., Crombie, D.L., Munoz, J., Longmire-Cook, S.J., Hagey, L.R., and Hofmann, A.F. (1993) Negative Feedback Regulation of the Ileal Bile Transport System in Rodents, Gastroenterology 104, 38–46.

    PubMed  CAS  Google Scholar 

  14. 14.

    Stravitz, R.T., Sanya, A.J., Pandak, W.M., Vlahcevic, Z.R., Beets, J.W., and Dawson, P.A. (1997) Induction of Sodium-Dependent Bile Acid Transporter Messenger RNA, Protein, and Activity in Rat Ileum by Cholic Acid, Gastroenterology 113, 1599–1608.

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Fukushima, K., Ichimiya, H., Higashijima, H., Yamashita, H., Kuroki, S., Chijiwa, K., and Tanaka, M. (1995) Regulation of Bile Acid Synthesis in the Rat: Relationship Between Hepatic Cholesterol 7α-Hydroxylase Activity and Portal Bile Acids, J. Lipid Res. 36, 315–321.

    PubMed  CAS  Google Scholar 

  16. 16.

    Demigné, C., Levrat, M.-A., Behr, S., Moundras, C., and Rémésy, C. (1998) Cholesterol-Lowering Action of Guar Gum in the Rat: Changes in Bile Acids and Sterols Excretion and in Enterohepatic Cycling of Bile Acids, Nutr. Res. 18, 1215–1225.

    Article  Google Scholar 

  17. 17.

    Danielsson, H., Einarsson, K., and Johansson, G. (1967) Effect of Biliary Drainage on Individual Reactions in the Conversion of Cholesterol to Taurocholic Acid, Eur. J. Biochem. 2, 44–49.

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    Princen, H.M.G., Post, S.M., and Twisk, J. (1997) Regulation of Bile Acid Biosynthesis, Current Pharmaceut. Design 3, 59–84.

    CAS  Google Scholar 

  19. 19.

    Todd, P.A., Benfield, P., and Goa, K.L. (1990) Guar Gum. A Review of Its Pharmacological Properties, and Use as a Dietary Adjunct in Hypercholesterolemia, Drugs 39, 917–928.

    PubMed  CAS  Google Scholar 

  20. 20.

    Anderson, J.W., Jones, A.E., and Riddell-Mason, S. (1994) Ten Different Dietary Fibers Have Significant Different Effects on Serum and Liver Lipids on Cholesterol-Fed Rats, J. Nutr. 124, 78–83.

    PubMed  CAS  Google Scholar 

  21. 21.

    Vahouny, G.V., Tombes, R., Cassidy, M.M., Kritchevsky, D., and Gallo, L.L. (1980) Dietary Fibers: V. Binding of Bile Salts, Phospholipids and Cholesterol from Mixed Micelles by Bile Acid Sequestrants and Dietary Fibers, Lipids 15, 1012–1018.

    PubMed  CAS  Google Scholar 

  22. 22.

    Favier, M.-L., Bost, P.-E., Guittard, C., Demigné, C., and Rémésy, C. (1997) The Cholesterol-Lowering Effect of Guar Gum Is Not the Result of a Simple Diversion of Bile Acids Toward Fecal Excretion, Lipids 32, 953–959.

    PubMed  CAS  Google Scholar 

  23. 23.

    Ikegami, S., Tsuchihashi, F., Harada, H., Tsuchihashi, N., Nishide, E., and Innani, S. (1990) Effect of Viscous Indigestible Polysaccharide on Pancreatic-Biliary Secretion and Digestive Organs in Rats, J. Nutr. 120, 353–360.

    PubMed  CAS  Google Scholar 

  24. 24.

    Ide, T., Moruichi, H., and Nihimoto, K. (1991) Hypolipidemic Effects of Guar Gum and Its Enzyme Hydrolysate in Rats Fed Highly Saturated Fat Diets, Ann. Nutr. Metab. 35, 34–44.

    PubMed  CAS  Google Scholar 

  25. 25.

    Ide, T., and Horii, M. (1987) A Simple Method for Extraction and Determination of Non-conjugated and Conjugated Luminal Bile Acids in Rats, Agric. Biol. Chem. 51, 3155–3157.

    CAS  Google Scholar 

  26. 26.

    Lewis, M.C., and Root, C. (1990) In vivo Transport Kinetics and distribution of Taurocholate by Rat Ileum and Jejunum, Am. J. Physiol. 259, G233-G238.

    PubMed  CAS  Google Scholar 

  27. 27.

    Juste, C., Legrand-Defretin, V., Corring, T., and Rerat, A. (1988) Intestinal Absorption of Bile Acids in the Pig. Role of Distal Bowel, Dig. Dis. Sci. 33, 67–73.

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    Nowicki, M.J., Shneider, B.L., Paul, J.M., and Heubi, J.E. (1997) Glucocorticoids Upregulate Taurocholate Transport by Ileal Brush-border Membrane, Am. J. Physiol. 273, G197-G203.

    PubMed  CAS  Google Scholar 

  29. 29.

    Arrese, M., Trauner, M., Sacchiero, R.J., Crossman, M.W., and Schneider, B.L. (1998) Neither Intestinal Sequestration of Bile Acids Nor Common Bile Duct Ligation Modulate the Expression and Function of the Rat Ileal Bile Acid Transporter, Hepatology 28, 1081–1087.

    PubMed  CAS  Article  Google Scholar 

  30. 30.

    Stark, A., Nyska, A., and Madar, Z. (1996) Metabolic and Morphometric Changes in Small and Large Intestine in Rats Fed High-Fiber Diets, Toxicol. Pathol. 24, 166–171.

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    Brown, N.J., Worlding, J., Rumsey, R.D.E., and Read, N.W. (1988) The Effect of Guar Gum on the Distribution of a Radiolabelled Meal in the Gastrointestinal Tract of the Rat, Br. J. Nutr. 59, 223–231.

    PubMed  CAS  Article  Google Scholar 

  32. 32.

    Cherbut, C., Albina, E., Champ, M., Doublier, J.L., and Lecannu, G. (1990) Action of Guar Gums on the Viscosity of Digestive Contents and on the Gastrointestinal Motor Function in Pigs, Digestion 46, 205–213.

    PubMed  CAS  Google Scholar 

  33. 33.

    Björkhem, I., Eggerston, G., and Andersson, U. (1991) On the Mechanism of Stimulation of Cholesterol 7α-Hydroxylase by Dietary Cholesterol, Biochim. Biophys. Acta 1085, 329–335.

    PubMed  Google Scholar 

  34. 34.

    Ide, T., Horii, M., Yamamoto, T., and Kawashima, K. (1990) Contrasting Effects of Water-Soluble and Water-Insoluble Dietary Fibers on Bile Acid Conjugation and Taurine Metabolism in the Rat, Lipids 25, 335–340.

    PubMed  CAS  Google Scholar 

  35. 35.

    Aldini, R., Montagnani, M., Roda, A., Hrelia, S., Biagi, P.L., and Roda, E. (1996) Intestinal Absorption of Bile Acids in the Rabbit: Different Transport Rates in Jejunum and Ileum, Gastroenterology 110, 459–468.

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Dumaswala, R., Berkowitz, D., Setchell, K.D., and Heubi, J.E. (1994) Effects of Fasting on the Enterohepatic Circulation of Bile Acids in Rats, Am. J. Physiol. 267, G836-G842.

    PubMed  CAS  Google Scholar 

  37. 37.

    Walker, S., Stiehl, A., Raedsch, R., Kloters, P., and Kommerell, B. (1985) Absorption of Urso- and Chenodeoxycholic Acid and Their Taurine and Glycine Conjugates in Rat Jejunum, Ileum, and Colon, Digestion 32, 47–52

    PubMed  CAS  Article  Google Scholar 

  38. 38.

    Rémésy, C., Levrat, M.-A., Gamet, L., and Demigné, C. (1993) Cecal Fermentations in Rats Fed Oligosaccharides (inulin) Are Modulated by Dietary Calcium Level, Am. J. Physiol. 264, G855-G862.

    PubMed  Google Scholar 

  39. 39.

    Gelissen, I., and Eastwood, M.A. (1995) Taurocholic Adsorption During Non-starch Polysaccharide Fermentation: An in vitro Study, Br. J. Nutr. 74, 221–228.

    PubMed  CAS  Article  Google Scholar 

  40. 40.

    Cronholm, T., and Sjövall, J. (1967) Bile Acids in Portal Blood of Rats Fed Different Diets and Cholestyramine, Eur. J. Biochem. 2, 375–383.

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Pandak, W.M., Heuman, D.M., Hylemon, P.B., Chiang, J.Y.L., and Vlahcevic, Z.R. (1995) Hailure of Intravenous Infusion of Taurocholate to Down-regulate Cholesterol 7α-Hydroxylase in Rats with Biliary Fistula, Gastroenterology 108, 533–544.

    PubMed  CAS  Article  Google Scholar 

  42. 42.

    Stange, E.F., Scheibner, J., and Ditschuneit, H. (1989) Role of Primary and Secondary Bile Acids as Feedback Inhibitors of Bile Acid Synthesis in the Rat in vivo, J. Clin. Invest. 84, 173–180.

    PubMed  CAS  Article  Google Scholar 

  43. 43.

    Stravitz, R.T., Vlahcevic, Z.R., Gurley, E.C., and Hylemon, P.B. (1995) Repression of Cholesterol 7α-Hydroxylase Transcription by Bile Acids Is Mediated Through Protein Kinase C in Primary Cultures of Rat Hepatocytes, J. Lipid Res. 36, 1359–1369.

    PubMed  CAS  Google Scholar 

  44. 44.

    Stroup, D., Crestani, M., Chiang, J.Y.L. (1997) Identification of a Bile Acids Response Element in the Cholesterol 7α-Hydroxylase Gene CYP7A, Am. J. Physiol. 273, G508-G517.

    PubMed  CAS  Google Scholar 

  45. 45.

    Jenkins, D.J.A., Leeds, A.R., Gassull, M.A., Cochet, B., and Alberti, K.G.M.M. (1977) Decrease in Postprandial Insulin and Glucose Concentrations by Guar and Pectin, Ann. Intern. Med. 86, 20–23.

    PubMed  CAS  Google Scholar 

  46. 46.

    Morand, C., Levrat, M., Besson, C., Demigné, C., and Rémésy C. (1994) Effect of a Diet Rich in Resistant Starch on Hepatic Lipid Metabolism in the Rat, J. Nutr. Biochem. 5, 138–144.

    CAS  Article  Google Scholar 

  47. 47.

    Vlahcevic, Z.R., Stravitz, R.T., Heuman, D.M., Hylemon, P.B., and Pandak, W.M. (1997) Quantitative Estimations of the Contribution of Different Bile Acid Pathways to the Total Bile Acid Synthesis in the Rat, Gastroenterology 113, 1949–1957.

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christian Demigné.

About this article

Cite this article

Moriceau, S., Besson, C., Levrat, MA. et al. Cholesterol-lowering effects of guar gum: Changes in bile acid pools and intestinal reabsorption. Lipids 35, 437–444 (2000). https://doi.org/10.1007/s11745-000-542-x

Download citation

Keywords

  • Bile Acid
  • Ileal
  • Resistant Starch
  • Unstirred Layer
  • Bile Acid Pool