Skip to main content
Log in

Fatty acid chain length and degree of unsaturation are inversely associated with serum triglycerides

  • Published:
Lipids

Abstract

Little is known about the association between dietary fatty acids and serum triglyceride concentrations. Plasma fatty acids may reflect dietary intake and can be used to study the relationship between concentrations of individual fatty acids and serum lipids. We examined the cross-sectional relationship of plasma fatty acids with serum nonfasting triglyceride and total cholesterol concentrations. Relative concentrations of individual plasma phospholipid fatty acids were determined by gas-liquid chromatography among 4,158 men aged 40–42 yr, who participated in a population study. The pattern of associations between individual fatty acids and cholesterol was different from that between individual fatty acids and triglyceride concentrations. All fatty acids displayed positive associations with total cholesterol concentration except linoleic acid, which was inversely related to cholesterol. In contrast, associations between individual fatty acids and triglyceride concentrations differed in strength and direction depending on both carbon chain length and the degree of unsaturation. Concentrations of very long chain (20 carbon atoms or more) saturated, monounsaturated, and n-3 polyunsaturated fatty acids showed significant inverse associations with triglycerides, whereas shorter fatty acids within these classes were positively associated with triglyceride concentrations. The present data suggest that the associations between concentrations of serum triglycerides and plasma phospholipid fatty acids depend on both fatty acid chain length and the degree of unsaturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BMI:

body mass index

LDL:

low density lipoprotein

VLDL:

very low density lipoprotein

References

  1. Hokanson, J.E., and Austin, M.A. (1996) Plasma Triglyceride Level Is a Risk Factor for Cardiovascular Disease Independent of High-Density Lipoprotein Cholesterol Level: A Meta-analysis of Population-based Prospective Studies, J. Cardiovasc. Risk. 3, 213–219.

    Article  PubMed  CAS  Google Scholar 

  2. Jeppesen, J., Hein, H.O., Suadicani, P., and Gyntelberg, F. (1998) Triglyceride Concentration and Ischemic Heart Disease: An Eight-year Follow-up in the Copenhagen Male Study, Circulation 97, 1029–1036.

    PubMed  CAS  Google Scholar 

  3. Harris, W.S. (1997) n-3 Fatty Acids and Serum Lipoproteins: Human Studies, Am. J. Clin. Nutr. 65 1645S-1654S.

    PubMed  CAS  Google Scholar 

  4. Mensink, R.P., and Katan, M.B. (1992) Effect of Dietary Fatty Acids on Serum Lipids and Lipoproteins. A Meta-analysis of 27 Trials, Arterioscler. Thromb. 12, 911–919.

    PubMed  CAS  Google Scholar 

  5. Gardner, C.D., and Kraemer, H.C. (1995) Monounsaturated Versus Polyunsaturated Dietary Fat and Serum Lipids. A Meta-analysis, Arterioscler. Thromb. Vasc. Biol. 15, 1917–1927.

    PubMed  CAS  Google Scholar 

  6. Kris Etherton, P.M., and Yu, S. (1997) Individual Fatty Acid Effects on Plasma Lipids and Lipoproteins: Human Studies, Am. J. Clin. Nutr. 65, 1628S-1644S.

    PubMed  CAS  Google Scholar 

  7. Nikkari, T., Luukkainen, P., Pietinen, P., and Puska, P. (1995) Fatty Acid Composition of Serum Lipid Fractions in Relation to Gender and Quality of Dietary Fat, Ann. Med. 27, 491–498.

    PubMed  CAS  Google Scholar 

  8. Ma, J., Folsom, A.R., Shahar, E., and Eckfeldt, J.H. (1995) Plasma Fatty Acid Composition as an Indicator of Habitual Dietary Fat Intake in Middle-aged Adults. The Atherosclerosis Risk in Communities (ARIC) Study Investigators, Am. J. Clin. Nutr. 62, 564–571.

    PubMed  CAS  Google Scholar 

  9. Andersen, L.F., Solvoll, K., and Drevon, C.A. (1996) Very-long-chain n-3 Fatty Acids as Biomarkers for Intake of Fish and n-3 Fatty Acid Concentrates, Am. J. Clin. Nutr. 64, 305–311.

    PubMed  CAS  Google Scholar 

  10. Padley, F.B., Gunstone, F.D., and Harwood, J.L. (1994) Occurrence and Characteristics of Oils and Fats, in The Lipid Handbook (Gunstone, F.D., Harwood, J.L., and Padley, F.B. eds.) pp. 47–223, Chapman & Hall, London.

    Google Scholar 

  11. Lasserre, M., Mendy, F., Spielmann, D., and Jacotot, B. (1985) Effects of Different Dietary Intake of Essential Fatty Acids on C20∶3ω6 and C20∶4ω6 Serum Levels in Human Adults, Lipids 20, 227–233.

    PubMed  CAS  Google Scholar 

  12. Siguel, E.N., and Maclure, M. (1987) Relative Activity of Unsaturated Fatty Acid Metabolic Pathways in Humans, Metabolism 36, 664–669.

    Article  PubMed  CAS  Google Scholar 

  13. Miettinen, T.A., Naukkarinen, V., Huttunen, J.K., Mattila, S., and Kumlin, T. (1982) Fatty-Acid Composition of Serum Lipids Predicts Myocardial Infarction, Br. Med. J. Clin. Res. Ed. 285, 993–996.

    PubMed  CAS  Google Scholar 

  14. Bønaa, K.H., Bjerve, K.S., and Nordøy, A. (1992) Habitual Fish Consumption, Plasma Phospholipid Fatty Acids, and Serum Lipids: The Tromsø Study, Am. J. Clin. Nutr. 55, 1126–1134.

    PubMed  Google Scholar 

  15. De Backer, G., De Craene, I., Rosseneu, M., Vercaemst, R., and Kornitzer, M. (1989) Relationship Between Serum Cholesteryl Ester Composition, Dietary Habits and Coronary Risk Factors in Middle-aged Men, Atherosclerosis 78, 237–243.

    Article  PubMed  Google Scholar 

  16. Cambien, F., Warnet, J.M., Vernier, V., Ducimetiere, P., Jacqueson, A., Flament, C., Orssaud, G., Richard, J.L., and Claude, J.R. (1988) An Epidemiologic Appraisal of the Associations Between the Fatty Acids Esterifying Serum Cholesterol and Some Cardiovascular Risk Factors in Middle-aged Men, Am. J. Epidemiol. 127, 75–86.

    PubMed  CAS  Google Scholar 

  17. Sandker, G.W., Kromhout, D., Aravanis, C., Bloemberg, B.P., Mensink, R.P., Karalias, N., and Katan, M.B. (1993) Serum Cholesteryl Ester Fatty Acids and Their Relation with Serum Lipids in Elderly Men in Crete and The Netherlands, Eur. J. Clin. Nutr. 47, 201–208.

    PubMed  CAS  Google Scholar 

  18. Rosseneu, M., Cambien, F., Vinaimont, N., Nicaud, V., and De Backer, G. (1994) Biomarkers of Dietary Fat Composition in Young Adults with a Parental History of Premature Coronary Heart Disease Compared with Controls. The EARS Study, Atherosclerosis 108, 127–136.

    Article  PubMed  CAS  Google Scholar 

  19. Jacobsen, B.K., Stensvold, J., Fylkesnes, K., Kristiansen, I.S., and Thelle, D.S. (1992) The Nordland Health Study. Design of the Study, Description of the Population, Attendance and Questionnaire Response, Scand. J. Soc. Med. 20, 184–187.

    PubMed  CAS  Google Scholar 

  20. Roschlau, P., Bernt, E., and Gruber, W. (1974) [Enzymatic Determination of Total Cholesterol in Serum (author's transl.)], Enzymatische Bestimmung des Gesamt-Cholesterins im Serum, Z. Klin. Chem. Klin. Biochem. 12, 403–407.

    PubMed  CAS  Google Scholar 

  21. Eggstein, M., and Kreutz, F.H. (1966) Eine neue Bestimmung der Neutralfette im Blutserum und Gewebe. I. Prinzip, Durchfuhrung und Besprechung der Methode, Klin. Wochenschr. 44, 262–267.

    Article  PubMed  CAS  Google Scholar 

  22. Bjerve, K.S., Fischer, S., and Alme, K. (1987) Alpha-linolenic Acid Deficiency in Man: Effect of Ethyl Linolenate on Plasma and Erythrocyte Fatty Acid Composition and Biosynthesis of Prostanoids, Am. J. Clin. Nutr. 46, 570–576.

    PubMed  CAS  Google Scholar 

  23. Kleinbaum, D.G., Kupper, L.L., and Muller, K.E. (1988) Applied Regression Analysis and Other Multivariate Methods, 2nd edn., PWS-KENT, Belmont, CA.

    Google Scholar 

  24. SAS Institute Inc (1990) SAS/STAT User's Guide, 4th edn., SAS Institute Inc, Cary, NC.

    Google Scholar 

  25. Harris, W.S. (1989) Fish Oils and Plasma Lipid and Lipoprotein Metabolism in Humans: A Critical Review, J. Lipid Res. 30, 785–807.

    PubMed  CAS  Google Scholar 

  26. Willumsen, N., Skorve, J., Hexeberg, S., Rustan, A.C., and Berge, R.K. (1993) The Hypotriglyceridemic Effect of Eicosapentaenoic Acid in Rats Is Reflected in Increased Mitochondrial Fatty Acid Oxidation Followed by Diminished Lipogenesis, Lipids 28, 683–690.

    PubMed  CAS  Google Scholar 

  27. Mannaerts, G.P., and Van Veldhoven, P.P. (1993) Metabolic Role of Mammalian Peroxisomes, in Peroxisomes: Biology and Importance in Toxicology and Medicine (Gibson, G. and Lake, B., eds.) pp. 19–62, Taylor and Francis, London.

    Google Scholar 

  28. Frøyland, L., Madsen, L., Vaagenes, H., Totland, G.K., Auwerx, J. Kryvi, H., Staels, B., and Berge, R.K. (1997) Mitochondrion Is the Principal Target for Nutritional and Pharmacological Control of Triglyceride Metabolism, J. Lipid. Res. 38, 1851–1858.

    PubMed  Google Scholar 

  29. Jacobsen, B.K., and Thelle, D.S. (1987) The Tromsø Heart Study: Food Habits, Serum Total Cholesterol, HDL Cholesterol, and Triglycerides, Am. J. Epidemiol. 125, 622–630.

    PubMed  CAS  Google Scholar 

  30. Sacks, F.M., Stampfer, M.J., Munoz, A., McManus, K., Canessa, M., and Kass, E.H. (1987) Effect of Linoleic and Oleic Acids on Blood Pressure, Blood Viscosity, and Erythrocyte Cation Transport, J. Am. Coll. Nutr. 6, 179–185.

    PubMed  CAS  Google Scholar 

  31. Grimsgaard, S., Bønaa, K.H., Hansen, J.B., and Nordøy, A. (1997) Highly Purified Eicosapentaenoic Acid and Docosahexaenoic Acid in Humans Have Similar Triacylglycerol Lowering Effects, But Divergent Effects on Serum Fatty Acids, Am. J. Clin. Nutr. 66, 649–659.

    PubMed  CAS  Google Scholar 

  32. Zock, P.L., and Katan, M.B. (1992) Hydrogenation Alternatives: Effects of trans Fatty Acids and Stearic Acid Versus Linoleic Acid on Serum Lipids and Lipoproteins in Humans, J. Lipid Res. 33, 399–410.

    PubMed  CAS  Google Scholar 

  33. Lopes, S.M., Trimbo, S.L., Mascioli, E.A., and Blackburn, G.L., (1991) Human Plasma Fatty Acid Variations and How They Are Related to Dietary Intake, Am. J. Clin. Nutr. 53, 628–637.

    PubMed  CAS  Google Scholar 

  34. Simon, J.A., Fong, J., Bernert, J.T., Jr., and Browner, W.S. (1996) Relation of Smoking and Alcohol Consumption to Serum Fatty Acids, Am. J. Epidemiol. 144, 325–334.

    PubMed  CAS  Google Scholar 

  35. Feinman, L., and Lieber, C.S. (1998) Nutrition and Diet in Alcoholism, in Modern Nutrition in Health and Disease (Shils, M.E., Olson, J.A., and Shike, M., eds.) Vol. 2, pp. 1081–1101, Lea and Febiger, Philadelphia.

    Google Scholar 

  36. Jacobs, D.R., Jr., and Barrett Connor, E. (1982) Retest Reliability of Plasma Cholesterol and Triglyceride. The Lipid Research Clinics Prevalence Study, Am. J. Epidemiol. 116, 878–885.

    PubMed  Google Scholar 

  37. Riemersma, R.A., Wood, D.A., Butler, S., Elton, R.A., Oliver, M., Salo, M., Nikkari, T., Vartiainen, E., Puska, P., Gey, F. et al. (1986) Linoleic Acid Content in Adipose Tissue and Coronary Heart Disease, Br. Med. J. Clin. Res. Ed. 292, 1423–1427.

    Article  PubMed  CAS  Google Scholar 

  38. Seidell, J.C., Cigolini, M., Deslypere, J.P., Charzewska, J., and Ellsinger, B.M. (1991) Polyunsaturated Fatty Acids in Adipose Tissue in European Men Aged 38 Years in Relation to Serum Lipids, Smoking Habits, and Fat Distribution, Am. J. Epidemiol. 134, 583–589.

    PubMed  CAS  Google Scholar 

  39. Dietschy, J.M. (1997) Theoretical Considerations of What Regulates Low-Density-Lipoprotein and High-Density-Lipoprotein Cholesterol, Am. J. Clin. Nutr. 65, 1581S-1589S.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameline Grimsgaard.

About this article

Cite this article

Grimsgaard, S., Bønaa, K.H. & Bjerve, K.S. Fatty acid chain length and degree of unsaturation are inversely associated with serum triglycerides. Lipids 35, 1185–1193 (2000). https://doi.org/10.1007/s11745-000-0635-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-000-0635-6

Keywords

Navigation