Skip to main content
Log in

Effect of n−3 fatty acid deficiency on fatty acid composition and metabolism of aminophospholipids in rat brain synaptosomes

  • Published:
Lipids

Abstract

Docosahexaenoic acid (DHA, 22∶6n−3) is one of the major polyunsaturated fatty acids esterified predominantly in aminophospholipids such as ethanolamine glycerophospholipid (EtnGpl) and serine glycerophospholipid (SerGpl) in the brain. Synaptosomes prepared from rats fed an n−3 fatty acid-deficient safflower oil (Saf) diet had significantly decreased 22∶6n−3 content with a compensatory increased 22∶5n−6 content when compared with rats fed an n−3 fatty acid-sufficient perilla oil (Per) diet. When the Saf group was shifted to a diet supplemented with safflower oil plus 22∶6n−3 (Saf+DHA) after weaning, 22∶6n−3 content was found to be restored to the level of the Per group. The uptake of [3H]ethanolamine and its conversion to [3H]EtnGpl did not differ significantly among the three dietary groups, whereas the formation of [3H]lysoEtnGpl from [3H]ethanolamine was significantly lower in the Saf group than in the other groups. The uptake of [3H]serine, its incorporation into [3H]SerGpl, and the conversion into [3H]EtnGpl by decarboxylation of [3H]SerGpl did not differ among the three dietary groups. The observed decrease in lysoEtnGpl formation associated with a reduction of 22∶6n−3 content in rat brain synaptosomes by n−3 fatty acid deprivation may provide a clue to reveal biochemical bases for the dietary fatty acids-behavior link.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA:

analysis of variance

BSS:

balanced salt solution

ChoGpl:

choline glycerophospholipid

DHA:

docosahexaenoic acid (22∶6n−3)

EtnGpl:

ethanolamine glycerophospholipid

NGF:

nerve growth factor

PBS:

phosphate-buffered saline

Per:

perilla oil

PLA:

phospholipase A

PtdIns:

phosphatidylinositol

PUFA:

polyunsaturated fatty acid

Saf:

safflower oil

SerGpl:

serine glycerophospholipid

TLC:

thin-layer chromatography

References

  1. Bazan, N.G. (1990) Supply of n−3 Polyunsaturated Fatty Acids and Their Significance in the Central Nervous System, in Nutrition and the Brain (Wurtman, R.J., and Wurtman, J.J., eds.) Vol. 8, pp. 1–24, Raven Press, New York.

    Google Scholar 

  2. Pawlosky, R.J., Ward, G., and Salem, N., Jr. (1996) Essential Fatty Acid Uptake and Metabolism in the Developing Rodent Brain, Lipids 31, S103-S107.

    PubMed  CAS  Google Scholar 

  3. Green, P., and Yavin, E. (1993) Elongation, Desaturation, and Esterification of Essential Fatty Acids by Fetal Rat Brain in vivo, J. Lipid Res. 34, 2099–2107.

    PubMed  CAS  Google Scholar 

  4. Yamamoto, N., Saito, M., Moriuchi, A., Nomura, M., and Okuyama, H. (1987) Effect of the Dietary α-Linolenate/Linoleate Balance on Lipid Compositions and Learning Ability of Rats, J. Lipid Res. 28, 144–151.

    PubMed  CAS  Google Scholar 

  5. Yamamoto, N., Hashimoto, A., Moriuchi, A., Takemoto, Y., Okuyama, H., Nomura, M., Kitajima, R., Togasi, T., and Tamai, Y. (1988) Effect of the Dietary α-Linolenate/Linoleate Balance on Lipid Compositions and Learning Ability of Rats. II. Discrimination Process, Extinction Process, and Glycolipid Compositions, J. Lipid Res. 29, 1013–1021.

    PubMed  CAS  Google Scholar 

  6. Yamamoto, N., Okaniwa, Y., Mori, S., Nomura, M., and Okuyama, H. (1991) Effect of the High α-Linolenate Diet on the Learning Ability of Aged Rats, J. Gerontol. 46, B17-B22.

    PubMed  CAS  Google Scholar 

  7. Watanabe, I., Kato, M., Aonuma, H., Hashimoto, A., Naito, Y., Moriuchi, A., and Okuyama, H. (1987) Effect of Dietary α-Linolenate/Linoleate Balance on the Lipid Composition and Electroretinographic Responses in Rats, Adv. Biosci. 62, 563–570.

    Google Scholar 

  8. Bourre, J.M., Francois, M., Youyou, A., Dumont, O., Piciotti, M., Pascal, G., and Durand, G. (1989) The Effects of Dietary α-Linolenic Acid on the Composition of Nerve Membranes, Enzymatic Activity, Amplitude of Electrophysiological Parameters, Resistance to Poisons and Performance of Learning Tasks in Rats, J. Nutr. 119, 1880–1892.

    PubMed  CAS  Google Scholar 

  9. Nakashima, Y., Yuasa, S., Hukamizu, Y., Okuyama, H., Ohhara, T., Kameyama, T., and Nabeshima, T. (1993) Effect of a High Linoleate and a High α-Linolenate Diet on General Behavior and Drug Sensitivity in Mice, J. Lipid. Res. 34, 239–247.

    PubMed  CAS  Google Scholar 

  10. Salem, N., Jr., and Niebylski, C.D. (1995) The Nervous System Has Absolute Molecular Species Requirement for Proper Function, Mol. Membr. Biol. 12, 131–134.

    PubMed  CAS  Google Scholar 

  11. Yoshida, S., Yasuda, A., Kawazato, H., Sasaki, K., Shimada, T., Takeshita, M., Yuasa, S., Kobayashi, T., Watanabe, S., and Okuyama, H. (1997) Synaptic Vesicle Ultrastructural Changes in the Rat Hippocampus Induced by a Combination of α-Linolenate Deficiency and a Learning Task, J. Neurochem. 68, 1261–1268.

    Article  PubMed  CAS  Google Scholar 

  12. Yoshida, S., Miyazaki, M., Takeshita, M., Yuasa, S., Kobayashi, T., Watanabe, S., and Okuyama, H. (1997) Functional Changes of Rat Brain Microsomal Membrane Surface After Learning Task Depending on Dietary Fatty Acids, J. Neurochem. 68, 1269–1277.

    Article  PubMed  CAS  Google Scholar 

  13. Barrantes, F.J. (1993) Structural-Functional Correlates of the Nicotinic Acetylcholine Receptor and Its Lipid Microenvironment, FASEB J. 7, 1460–1467.

    PubMed  CAS  Google Scholar 

  14. Newton, A.C., and Keranen, L.M. (1994) Phosphatidyl-l-serine Is Necessary for Protein Kinase C's High-Affinity Interaction with Diacylglycerol-Containing Membranes, Biochemistry 33, 6651–6658.

    Article  PubMed  CAS  Google Scholar 

  15. Sakane, F., Yamada, K., Imai, S., and Kanoh, H. (1991) Porcine 80-kDa Diacylglycerol Kinase Is a Calcium-Binding and Calcium/Phospholipid-Dependent Enzyme and Undergoes Calcium-Dependent Translocation, J. Biol. Chem. 266, 7096–7100.

    PubMed  CAS  Google Scholar 

  16. Stekhoven, F.M., Tijmes, J., Umeda, M., Inoue, K., and De Pont, J.J. (1994) Monoclonal Antibody to Phosphatidylserine Inhibits Na+/K+-ATPase Activity, Biochim. Biophys. Acta 1194, 155–165.

    Article  PubMed  CAS  Google Scholar 

  17. Calderon, C., Huang, Z.H., Gage, D.A., Sotomayor, E.M., and Lopez, D.M. (1994) Isolation of a Nitric Oxide Inhibitor from Mammary Tumor Cells and Its Characterization as Phosphatidylserine, J. Exp. Med. 180, 945–958.

    Article  PubMed  CAS  Google Scholar 

  18. Fadok, V.A., Voelker, D.R., Campbell, P.A., Cohen, J.J., Bratton, D.L., and Henson, P.M. (1992) Exposure of Phosphatidylserine on the Surface of Apoptotic Lymphocytes Triggers Specific Recognition and Removal by Macrophages, J. Immunol. 148, 2207–2216.

    PubMed  CAS  Google Scholar 

  19. Ikemoto, A., Kobayashi, T., Watanabe, S., and Okuyama, H. (1997) Membrane Fatty Acid Modifications of PC12 Cells by Arachidonate or Docosahexaenoate Affect Neurite Outgrowth but Not Norepinephrine Release, Neurochem. Res. 22, 671–678.

    Article  PubMed  CAS  Google Scholar 

  20. Ikemoto, A., Kobayashi, T., Emoto, K., Umeda, M., Watanabe, S., and Okuyama, H. (1999) Effect of Docosahexaenoic and Arachidonic Acids on the Synthesis and Distribution of Aminophospholipids During Neuronal Differentiation of PC12 Cells, Arch. Biochem. Biophys. 364, 67–74.

    Article  PubMed  CAS  Google Scholar 

  21. Garcia, M.C., Ward, G., Ma, Y.-C., Salem, N., Jr., and Kim, H.-Y. (1998) Effect of Docosahexaenoic Acid on the Synthesis of Phosphatidylserine in Rat Brain Microsomes and C6 Glioma Cells, J. Neurochem. 70, 24–30.

    Article  PubMed  CAS  Google Scholar 

  22. Gazzah, N., Gharib, A., Croset, M., Bobillier, P., Lagarde, M., and Sarda, N. (1995) Decrease of Brain Phospholipid Synthesis in Free-Moving n−3 Fatty Acid Deficient Rats, J. Neurochem. 64, 908–991.

    Article  PubMed  CAS  Google Scholar 

  23. Giaume, M., Gay, N., Baubet, V., Gharid, A., Durand, G., Bobillier, P., and Sarda, N. (1994) n−3 Fatty Acid Deficiency Increases Brain Protein Synthesis in the Free-Moving Adult Rat, J. Neurochem. 63, 1995–1998.

    Article  PubMed  CAS  Google Scholar 

  24. Rapoport, S.I. (1995) Docosahexaenoate Turnover in Brain Phospholipids, J. Neurochem. 65, 1903–1905.

    Article  PubMed  CAS  Google Scholar 

  25. Sato, A., Osakabe, T., Ikemoto, A., Watanabe, S., Kobayashi, T., and Okuyama, H. (1999) Long-term n−3 Fatty Acid Deficiency Induces No Substantial Change in the rate of Protein Synthesis in Rat Brain and Liver, Biol. Pharm. Bull. 22, 775–779.

    PubMed  CAS  Google Scholar 

  26. Dunkley, P.R., Heath, J.W., Harrison, S.M., Jarvie, P.E., Glenfield, P.J., and Rostas, A.P. (1988) A Rapid Percoll Gradient Procedure for Isolation of Synaptosomes Directly from an S1 Fraction: Homogeneity and Morphology of Subcellular Fractions, Brain Res. 441, 59–71.

    Article  PubMed  CAS  Google Scholar 

  27. Tsutsumi, T., Yamauchi, E., Suzuki, E., Watanabe, S., Kobayashi, T., and Okuyama, H. (1995) Effect of a High α-Linolenate and High Linoleate Diet on Membrane-Associated Enzyme Activities in Rat Brain—Modulation of Na+,K+-ATPase Activity at Suboptimal Concentrations of ATP, Biol. Pharm. Bull. 18, 664–670.

    PubMed  CAS  Google Scholar 

  28. Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., and Blenk, D.C. (1985) Measurement of Protein Using Bicinchoninic Acid, Anal. Biochem. 150, 76–85.

    Article  PubMed  CAS  Google Scholar 

  29. Bligh, E.G., and Dyer, W.J. (1959) A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  30. Okuyama, H., and Wakil, S.J. (1973) Positional Specificities of Acyl Coenzyme A: Glycerophosphate and Acyl Coenzyme A: Monoacylglycerophosphate Acyltransferases in Escherichia coli, J. Biol. Chem. 248, 5197–5205.

    PubMed  CAS  Google Scholar 

  31. Pete, M.J., Ross, A.H., and Exton, J.H. (1995) Purification and Properties of Phospholipase A1 from Bovine Brain, J. Biol. Chem. 269, 19494–19500.

    Google Scholar 

  32. Higgs, H.N., and Glomset, J.A. (1996) Purification and Properties of a Phosphatidic Acid-Preferring Phospholipase A1 from Bovine Testis, J. Biol. Chem. 271, 10874–10883.

    Article  PubMed  CAS  Google Scholar 

  33. Farooqui, A.A., Yang, H.-C., Rosenberger, T.A., and Horrocks, L.A. (1997) Phospholipase A2 and Its Role in Brain Tissue, J. Neurochem. 69, 889–901.

    Article  PubMed  CAS  Google Scholar 

  34. Dennis, E.A. (1997) The Growing Phospholipase A2 Superfamily of Signal Transduction Enzymes, Trends Biochem. Sci. 22, 1–2.

    Article  PubMed  CAS  Google Scholar 

  35. Matsuzawa, A., Murakami, M., Atsumi, G., Imai, K., Prados, P., Inoue, K., and Kudo, I. (1996) Release of Secretory Phospholipase A2 from Rat Neuronal Cells and Its Possible Function in the Regulation of Catecholamine Secretion, Biochem. J. 318, 701–709.

    PubMed  CAS  Google Scholar 

  36. Dennis, E.A. (1997) Function and Inhibition of Intracellular Calcium-Independent Phospholipase A2, J. Biol. Chem. 272, 16069–16072.

    Article  PubMed  Google Scholar 

  37. Farooqui, A.A., Yang, H.-C., and Horrocks, L.A. (1995) Plasmalogens, Phospholipases A2 and Signal Transduction, Brain Res. Rev. 21, 152–161.

    Article  PubMed  CAS  Google Scholar 

  38. Ross, B.M., and Kish, S.J. (1994) Characterization of Lysophospholipid Metabolizing Enzymes in Human Brain, J. Neurochem. 63, 1839–1848.

    Article  PubMed  CAS  Google Scholar 

  39. McMaster, C.R., and Choy, P.C. (1992) Newly Imported Ethanolamine is Preferentially Utilized for Phosphatidylethanolamine Biosynthesis in the Hamster Heart, Biochim. Biophys. Acta 1124, 13–16.

    PubMed  CAS  Google Scholar 

  40. Samborski, R.W., and Vance, D.E. (1993) Phosphatidylethanolamine Derived from Phosphatidylserine Is Deacylated and Reacylated in Rat Hepatocytes, Biochim. Biophys. Acta 1167, 15–21.

    PubMed  CAS  Google Scholar 

  41. Onuma, Y., Masuzawa, Y., Ishima, Y., and Waku, K. (1984) Selective Incorporation of Docosahexaenoic Acid in Rat Brain, Biochim. Biophys. Acta 793, 80–85.

    PubMed  CAS  Google Scholar 

  42. Yamashita, A., Sugiura, T., and Waku, K. (1997) Acyltransferases and Transacylases Involved in Fatty Acid Remodeling of Phospholipids and Metabolism of Bioactive Lipids in Mammalian Cells, J. Biochem. 122, 1–16.

    PubMed  CAS  Google Scholar 

  43. Holbrook, P.G., and Wurtman, R.J. (1990) Calcium-Dependent Incorporation of Choline into Phosphatidylcholine (PC) by Base-Exchange in Rat Brain Membranes Occurs Preferentially with Phospholipid Substrates Containing Docosahexaenoic Acids [22∶6(n−3)], Biochim. Biophys. Acta 1046, 185–188.

    PubMed  CAS  Google Scholar 

  44. Ellingson, J.S., and Seenaish, B. (1994) The Selective Use of Stearoyl-Polyunsaturated Molecular Species of Phosphatidylcholine and Phosphatidylethanolamine for the Synthesis of Phosphatidylserine, Biochim. Biophys. Acta 1213, 113–117.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Ikemoto.

About this article

Cite this article

Ikemoto, A., Ohishi, M., Hata, N. et al. Effect of n−3 fatty acid deficiency on fatty acid composition and metabolism of aminophospholipids in rat brain synaptosomes. Lipids 35, 1107–1115 (2000). https://doi.org/10.1007/s11745-000-0626-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-000-0626-7

Keywords

Navigation