Skip to main content
Log in

Cu2+-induced low density lipoprotein peroxidation is dependent on the initial O2 concentration: An O2 consumption study

  • Published:
Lipids

Abstract

Atherosclerotic plaques form in the arterial intima, where low density lipoprotein (LDL) is thought to be oxidatively modified at sites which may contain catalytic amounts of copper in the presence of low O2 tension. We have investigated O2 consumption during LDL peroxidation induced by Cu2+ ions in vitro and found two phases: a lag phase followed by a phase of rapid O2 consumption. The length of the lag phase was dependent on Cu2+ and on initial O2 concentrations; increasing either decreased the lag time; however, LDL concentration had no effect. LDL-induced Cu2+ reduction, however, was not affected by low initial O2 concentrations, suggesting that O2 is not required for LDL-mediated reduction of Cu2+. Following the lag phase O2 consumption was dependent upon LDL or initial O2 concentrations; Cu2+ concentrations had little effect, suggesting that the propagation phase is more dependent on the presence of LDL lipids and O2 as substrates for the reaction. In summary, LDL peroxidation takes place in the presence of Cu2+ at low O2 tension; however, the reaction is dependent upon initial O2 concentrations; increases shorten the lag phase and accelerate O2 consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

apoB:

apoprotein B

FPLC:

fast protein liquid chromatography

LDL:

low density lipoprotein

PBS:

phosphate-buffered saline

UV:

ultraviolet

References

  1. Halliwell, B., and Gutteridge, J.M.C. (1998) Free Radicals in Biology and Medicine, Clarendon Press, Oxford, pp. 289–296.

    Google Scholar 

  2. Steinberg, D., Parthasarathy, S., Carew, T.E., Khoo, J.C., and Witztum, J.L. (1989) Beyond Cholesterol. Modifications of Low-Density Lipoprotein That Increase Its Atherogenicity, New Engl. J. Med. 320, 915–924.

    Article  PubMed  CAS  Google Scholar 

  3. Esterbauer, H., Gebicki, J., Puhl, H., and Jurgens, G. (1992) The Role of Lipid Peroxidation and Antioxidants in Oxidative Modification of LDL, Free Radical Biol. Med. 13, 341–390.

    Article  CAS  Google Scholar 

  4. Sparrow, C.P., and Olszewski, J. (1993) Cellular Oxidation of Low Density Lipoprotein Is Caused by Thiol Production in Media Containing Transition Metal Ions, J. Lipid Res. 34, 1219–1228.

    PubMed  CAS  Google Scholar 

  5. Heinecke, J.W., Kawamura, M., Suzuki, L., and Chait, A. (1993) Oxidation of Low Density Lipoprotein by Thiols: Superoxide-Dependent and-Independent Mechanisms, J. Lipid Res. 34, 2051–2061.

    PubMed  CAS  Google Scholar 

  6. Smith, C., Mitchinson, M.J., Aruoma, O.I., and Halliwell, B. (1992) Stimulation of Lipid Peroxidation and Hydroxyl-Radical Generation by the Contents of Human Atherosclerotic Lesions, Biochem. J. 286, 901–905.

    PubMed  CAS  Google Scholar 

  7. Swain, J., and Gutteridge, J.M.C. (1995) Prooxidant Iron and Copper, with Ferroxidase and Xanthine Oxidase Activities in Human Atherosclerotic Material, FEBS Lett. 368, 513–515.

    Article  PubMed  CAS  Google Scholar 

  8. Lamb, D.J., Mitchinson, M.J., and Leake, D.S. (1995) Transition Metal Ions Within Human Atherosclerotic Lesions Can Catalyse the Oxidation of Low Density Lipoprotein by Macrophages, FEBS Lett. 374, 12–16.

    Article  PubMed  CAS  Google Scholar 

  9. Evans, P.J., Smith, C., Mitchinson, M.J., and Halliwell, B. (1995) Metal Ion Release from Mechanically Disrupted Human Arterial Wall. Implications for the Development of Atherosclerosis, Free Radical Res. 23, 465–469.

    CAS  Google Scholar 

  10. Leuwenburgh, C., Rasmussen, J.E., Hsu, F.F., Mueller, D.M., Penathur, S., and Heinecke, J.W. (1997) Mass Spectrometric Quantification of Markers for Protein Oxidation by Tyrosyl Radical, Copper, and Hydroxyl Radical in Low Density Lipoprotein Isolated from Human Atherosclerotic Plaques, J. Biol. Chem. 272, 3530–3535.

    Google Scholar 

  11. Hajjar, D.P., Faber, I.C., and Smith, S.C. (1988) Oxygen Tension Within the Arterial Wall: Relationship to Altered Bioenergetic Metabolism and Lipid Accumulation, Arch. Biochem. Biophys. 262, 375–380.

    Article  PubMed  CAS  Google Scholar 

  12. Laranjinha, J.A.N., Almedia, L.M., and Madeira, V.M.C. (1994) Reactivity of Dietary Phenolic Acids With Peroxyl Radicals: Antioxidant Activity Upon Low Density Lipoprotein Peroxidation, Biochim. Pharmacol. 48, 487–494.

    Article  CAS  Google Scholar 

  13. Noguchi, N., Gotoh, N., and Niki, E. (1993) Dynamics of the Oxidation of Low Density Lipoprotein Induced by Free Radicals, Biochim. Biophys. Acta 1168, 348–357.

    PubMed  CAS  Google Scholar 

  14. Noguchi, N., Numano, R., Kaneda, H., and Niki, E. (1998) Oxidation of Lipids in Low Density Lipoprotein Particles, Free Radical Res. Comm. 29, 43–52.

    Article  CAS  Google Scholar 

  15. Lodge, J.K. (1993) NMR Investigations of Lipoprotein Modifications, Ph.D. Thesis, University of London, London, pp. 29–74.

    Google Scholar 

  16. Ha, Y.C., and Barter, P.J. (1985) Rapid Separation of Plasma Lipoproteins by Gel Permeation Chromatography on Agarose Gel Superose 6B, J. Chromatogr. Biomed. Appl. 341, 154–159.

    Article  CAS  Google Scholar 

  17. Cole, T., Kitchens, R., Daugherty, A., and Schonfeld, G. (1988) FPLC Biocomm. 4, 4–6.

    Google Scholar 

  18. Burstein, M., and Scholnick, H.R. (1973) Lipoprotein-Polyanion-Metal Interactions, Adv. Lipid Res. 11, 67–108.

    PubMed  CAS  Google Scholar 

  19. Vanderkooi, J.M., Maniara, G., Green, T.J., and Wilson, D.F. (1987) An Optical Method for Measurement of Dioxygen Concentration Based Upon Quenching of Phosphorescence, J. Biol. Chem. 262, 5476–5482.

    PubMed  CAS  Google Scholar 

  20. Yomo, T., Urabe, I., and Okado, H. (1989) Enzymatic Method for Measuring the Absolute Value of Oxygen Concentration, Anal. Biochem. 179, 124–126.

    Article  PubMed  CAS  Google Scholar 

  21. Lynch, S.M., and Frei, B. (1995) Reduction of Copper, but Not Iron, by Human Low Density Lipoprotein (LDL). Implications for Metal Ion-Dependent Oxidative Modification of LDL, J. Biol. Chem. 270, 5158–5163.

    Article  PubMed  CAS  Google Scholar 

  22. Esterbauer, H., Dieber-Rotheneder, M., Waeg, G., Striegl, G., and Jurgens, G. (1990) Biochemical, Structural and Functional Properties of Oxidized Low-Density Lipoprotein, Chem. Res. Toxicol. 3, 77–92.

    Article  PubMed  CAS  Google Scholar 

  23. Crawford, D.W., and Blankenhorn, D.H. (1991) Arterial Wall Oxygenation, Oxyradicals, and Atherosclerosis, Atherosclerosis 89, 97–108.

    Article  PubMed  CAS  Google Scholar 

  24. Kontush, A., Meyer, S., Finckh, B., Kohlschutter, A., and Beisiegel, U. (1996) α-Tocopherol as a Reductant for Cu(II) in Human Lipoproteins, J. Biol. Chem. 271, 11106–11112.

    Article  PubMed  CAS  Google Scholar 

  25. Perugini, C., Seccia, M., Bagnati, M., Cau, C., Albano, E., and Bellomo, G. (1998) Different Mechanisms are Progressively Recruited to Promote Cu(II) Reduction by Isolated Human Low-Density Lipoprotein Undergoing Oxidation, Free Radical Biol. Med. 25, 519–528.

    Article  CAS  Google Scholar 

  26. Patel, R., Svistunenko, D., Wilson, M.T., and Darley-Usmar, V. (1997) Reduction of Cu(II) by Lipid Hydroperoxides: Implications for the Copper-Dependent Oxidation of Low-Density Lipoprotein, Biochem. J. 322, 85–92.

    Google Scholar 

  27. Kuzuya, M., Yamada, K., Hayashi, T., Funaki, C., Naito, M., Asai, K., and Kuzuya, F. (1992) Role of Lipoprotein-Copper Complex in Copper-Catalyzed Peroxidation of Low-Density Lipoprotein, Biochim. Biophys. Acta 1123, 334–341.

    PubMed  CAS  Google Scholar 

  28. Gieseg, S.P., and Esterbauer, H. (1994) Low Density Lipoprotein Is Saturable by Pro-Oxidant Copper, FEBS Lett. 343, 188–194.

    Article  PubMed  CAS  Google Scholar 

  29. Wagner, P., and Heinecke, J.W. (1997) Copper Ions Promote Peroxidation of Low Density Lipoprotein Lipid by Binding to Histidine Residues of Apolipoprotein B100, but They Are Reduced at Other Sites on LDL, Arterioscler. Thromb. Vasc. Biol. 17, 3338–3346.

    PubMed  CAS  Google Scholar 

  30. Bagnati, M., Bordone, R., Perugini, C., Cau, C., Albano E., and Bellomo, G. (1998) Cu(I) Availability Paradoxically Antagonizes Antioxidant Consumption and Lipid Peroxidation During the Initiation of Copper-Induced LDL Oxidation, Biochem. Biophys. Res. Comm. 253, 235–241.

    Article  PubMed  CAS  Google Scholar 

  31. Pinchuk, I., Schnitzer, E., and Lichtenberg, D. (1998) Kinetic Analysis of Copper-Induced Peroxidation of LDL, Biochim. Biophys. Acta 1389, 155–172.

    PubMed  CAS  Google Scholar 

  32. Thomas, M.J., Chen, Q., Franklin, C., and Rudel, L.L. (1997) A Comparison of the Kinetics of Low-Density Lipoprotein Oxidation Initiated by Copper or by Azobis (2-amidinopropane), Free Radical Biol. Med. 23, 927–935.

    Article  CAS  Google Scholar 

  33. Hatta, A., and Frei, B. (1995) Oxidative Modification and Antioxidant Protection of Human Low Density Lipoprotein at High and Low Oxygen Partial Pressures, J. Lipid Res. 36, 2383–2393.

    PubMed  CAS  Google Scholar 

  34. Reaven, P.D., Ferguson, E., Navab, M., and Powell, F.L. (1994) Susceptibility of Human LDL to Oxidative Modification. Effects of Variations in β-Carotene Concentration and Oxygen Tension, Arterioscler. Thromb. 14, 1162–1169.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John K. Lodge.

About this article

Cite this article

Lodge, J.K., Traber, M.G. & Sadler, P.J. Cu2+-induced low density lipoprotein peroxidation is dependent on the initial O2 concentration: An O2 consumption study. Lipids 35, 1087–1092 (2000). https://doi.org/10.1007/s11745-000-0623-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-000-0623-x

Keywords

Navigation