Skip to main content

Preferential loss of visceral fat following aerobic exercise, measured by magnetic resonance imaging


The aim of this study was to use whole-body magnetic resonance imaging (MRI) together with biochemical and anthropometric measurements to study the influence of regular moderate exercise with no dietary intervention on adipose tissue distribution in nonobese healthy women. We found significant decreases in both total (28.86±2.24 vs. 27.00±2.27 liters, P<0.05) and regional fat depots (visceral fat: 1.68±0.21 vs. 1.26±0.18 liters, P<0.01) using whole-body MRI despite no significant change in body weight, body mass index, or the waist-to-hip ratio. Interestingly, no changes in body fat content were found using anthropometry or impedance. There was a significant increase in high density lipoprotein cholesterol (1.58 ±0.06 vs. 1.66±0.08 mmol/L P<0.02) following exercise although there were no changes in other blood lipids such as triglycerides. In summary, moderate aerobic exercise over a period of 6 mon resulted in a preferential loss in visceral fat in nonobese healthy women, and this may help to explain some of the health benefits associated with regular and moderate physical activity.

This is a preview of subscription content, access via your institution.



British Association of Sports and Exercise Science


body mass index


confidence interval


computer-assisted tomography


coefficient of variation


dehydroepiandrosterone sulfate


high density lipoprotein cholesterol


low density lipoprotein cholesterol


magnetic resonance imaging


nonesterified fatty acid


sex hormone-binding globulin

VeO2 :

ventilatory oxygen equivalent

VO2 max:

maximal rate of oxygen consumption


waist-to-hip ratio


  1. 1.

    Folsom, A.R., Arnett, D.K., Hutchinson, R.G., Liao, F., Clegg, L.X., and Cooper, L.S. (1997) Physical Activity and Incidence of Coronary Heart Disease in Middle-Aged Women and Men, Med. Sci. Sports Exercise 29, 901–909.

    CAS  Google Scholar 

  2. 2.

    Richter, E.A., Turcotte, L.P., Hespel, P., and Kiens, B. (1992) Metabolic Responses to Exercise, Diabetes Care 15, 1767–1774.

    PubMed  CAS  Google Scholar 

  3. 3.

    Miller, W.C., Koceja, D.M., and Hamilton, E.J. (1997) A Meta-Analysis of the Past 25 Years of Weight Loss Research Using Diet, Exercise or Diet Plus Exercise Intervention, Int. J. Obesity 21, 941–947.

    CAS  Article  Google Scholar 

  4. 4.

    Tremblay, A., Despres, J.P., Leblanc, C., and Bouchard, C. (1984) Sex Dimorphism in Fat Loss in Response to Exercise-Training, J. Obes. Wt. Reg. 3, 193–203.

    Google Scholar 

  5. 5.

    Nelson, M.E., Fiatarone, M.A., Layne, J.E., Trice, I., Economos, C.D., Fielding, R.A., Ma, R., Pierson, R.N., and Evans, W.J. (1996) Analysis of Body-Composition Techniques and Models for Detecting Changes in Soft Tissue with Strength Training, Am. J. Clin. Nutr. 63, 678–686.

    PubMed  CAS  Google Scholar 

  6. 6.

    Treuth, M.S., Hunter, G.R., Kekes-Szabo, T., Weinsier, R.L., Goran, M.I., and Berland, L. (1995) Reduction in Intra-Abdominal Adipose Tissue After Strength Training in Older Women, J. Appl. Physiol. 78, 1425–1431.

    PubMed  CAS  Google Scholar 

  7. 7.

    Ross, R., Pedwell, H., and Rissanen, J. (1995) Effects of Energy Restriction and Exercise on Skeletal Muscle and Adipose Tissue in Women as Measured by Magnetic Resonance Imaging, Am. J. Clin. Nutr. 61, 1179–1185.

    PubMed  CAS  Google Scholar 

  8. 8.

    Ross, R., and Rissanen, J. (1994) Mobilization of Visceral and Subcutaneous Adipose Tissue in Response to Energy Restriction and Exercise, Am. J. Clin. Nutr. 60, 695–703.

    PubMed  CAS  Google Scholar 

  9. 9.

    Barnard, M.L., Schwieso, J.E., Thomas, E.L., Bell, J.D., Saeed, N., Frost, G., Bloom, S.R., and Hajnal, J.V. (1996) Evaluation of Magnetic Resonance Imaging Techniques for Analysis of Body Fat Distribution, NMR Biomed. 9, 156–164.

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Thomas, E.L., Saeed, N., Hajnal, J.V., Brynes, A.E., Goldstone, A.P., Frost, G., and Bell, J.D. (1998) Magnetic Resonance Imaging of Total Body Fat, J. Appl. Physiol. 85, 1778–1785.

    PubMed  CAS  Google Scholar 

  11. 11.

    Saeed, N., Barnard, M.L., Hajnal, J.V., Thomas, E.L., Bell, J.D., and Young, I.R. (1996) Automated Fat, Bone Marrow and Bone Segmentation from MR Scans Using Knowledge-Based Image Processing, Proceedings of the Fourth Annual Meeting of the Society for Magnetic Resonance 1635, held in New York, published in Berkeley.

  12. 12.

    Shephard, R.J. (1988) PAR-Q: Physical Activity Readiness Questionnaire, Sports Med. 5, 185–195.

    PubMed  CAS  Google Scholar 

  13. 13.

    Borg, G. (1970) Perceived Exertion as an Indicator of Somatic Stress, Scand. J. Rehab. Med. 2, 92–98.

    CAS  Google Scholar 

  14. 14.

    Physiological Testing Guidelines, 3rd edn., British Association of Sport and Exercise Sciences 1997, London.

  15. 15.

    Bingham, S.A., Gill, C., Welch, A., Day, K., Cassidy, A., Khaw, K.T., Sneyd, M.J., Key, T.J.A., Roe, L., and Day, N.E. (1994) Comparison of Dietary Assessment Methods in Nutritional Epidemiology: Weighed Records vs. 24 h Recalls, Food Frequency Questionnaire, and Estimated Records, Br. J. Nutr. 72, 619–643.

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Holland, B., Welch, A.A., Unwin, I.D., Buss, D.H., Paul, A.A., and Southgate, D.A.T. (1991) McCance and Widdowsonis—The Composition of Foods, 5th rev. and extended edition, RSC and Ministry of Agriculture Fisheries and Food, UK Government, London.

    Google Scholar 

  17. 17.

    Durnin, J.V.G., and Womersley, J. (1974) Body Fat Assessment from Total Body Density and Its Estimate from Skinfold Thicknesses: Measurements on 481 Men and Women Aged from 16 to 72 Years, Br. J. Nutr. 32, 77–87.

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    Despres, J.P., Pouliot, M.C., Moorjani, S., Nadeau, A., Tremblay, A., Lupien, P.J., Theriault, G., and Bouchard, C. (1991) Loss of Abdominal Fat and Metabolic Response to Exercise Training in Obese Women, Am. J. Physiol. 24, E159-E167.

    Google Scholar 

  19. 19.

    Schwartz, R.S., Cain, K.C., Shuman, W.P., Larson, V., Stratton, J.R., Beard, J.C., Kahn, S.E., Cerqueira, M.D., and Abrass, I.B. (1992) Effect of Intensive Endurance Training on Lipoprotein Profiles in Young and Older Men, Metabolism 41, 649–654.

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Rossner, S., Bo, W.J., Hiltbrandt, E., Hinson, W., Karstaedt, N., Santago, P., Sobol, W.T., and Crouse, J.R. (1990) Adipose Tissue Determinations in Cadavers—A Comparison Between Cross-Sectional Planimetry and Computed Tomography, Int. J. Obes. 14, 893–902.

    PubMed  CAS  Google Scholar 

  21. 21.

    Abate, N., and Garg, A. (1995) Heterogeneity in Adipose Tissue Metabolism: Causes, Implications and Management of Regional Adiposity, Prog. Lipid Res. 34, 53–70.

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Kraemer, W.J., Staron, R.S., Hagerman, F.C., Hikida, R.S., Fry, A.C., Gordon, S.E., Nindl, B.C., Gothshalk, L.A., Volek, J.S., Marx, J.O., Newton, R.U., and Hakkinen, K. (1998) The Effects of Short-Term Resistance Training on Endocrine Function in Men and Women, Eur. J. Appl. Physiol. 78, 69–76.

    CAS  Article  Google Scholar 

  23. 23.

    Tremblay, A., Despres, J.P., and Bouchard, C. (1985) The Effects of Exercise Training on Energy Balance and Adipose Tissue Morphology and Metabolism, Sports Med. 2, 223–233.

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Efendic, S. (1970) Catecholamines and Metabolism of Human Adipose Tissue. 3. Comparison Between the Regulation of Lipolysis in Omental and Subcutaneous Adipose Tissue, Acta Med. Scand. 187, 477–483.

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Martin, M.L., and Jensen, M.D. (1991) Effects of Body Fat Distribution on Regional Lipolysis in Obesity, J. Clin. Invest. 88, 609–613.

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    Pan, D.A., Lillioja, S., Kriketos, A.D., Milner, M.R., Baur, L.A., Bogardus, C., Jenkins, A.B., and Storlien, L.H. (1997) Skeletal Muscle Triglyceride Levels Are Inversely Related to Insulin Action, Diabetes 46, 983–988.

    PubMed  CAS  Google Scholar 

  27. 27.

    Han, T.S., and Lean, M.E.J. (1998) Self-Reported Waist Circumference Compared with the “Waist Watcher” Tape-Measure to Identify Individuals at Increased Health Risk Through Intra-Abdominal Fat Accumulation, Br. J. Nutr. 80, 81–88.

    PubMed  CAS  Google Scholar 

  28. 28.

    Durstine, J.L., and Haskell, W.L. (1994) Effects of Exercise Training on Plasma Lipids and Lipoproteins, Exercise Sport Sci. Rev. 22, 477–521.

    CAS  Google Scholar 

  29. 29.

    Montague, C.T., Prins, J.B., Sanders, L., Digby, J.E., and O'Rahilly, S. (1997) Depot- and Sex-Specific Differences in Human Leptin mRNA Expression: Implications for the Control of Regional Fat Distribution, Diabetes 46, 342–347.

    PubMed  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to E. Louise Thomas.

About this article

Cite this article

Louise Thomas, E., Brynes, A.E., McCarthy, J. et al. Preferential loss of visceral fat following aerobic exercise, measured by magnetic resonance imaging. Lipids 35, 769–776 (2000).

Download citation


  • Waist Circumference
  • Heart Rate Recovery
  • Preferential Loss
  • Marconi Medical System