Skip to main content
Log in

Composition of cecal bile acids in ex-germfree mice inoculated with human intestinal bacteria

  • Published:
Lipids

Abstract

Germfree (GF) mice were orally inoculated with human fecal suspension or various components of human fecal microbiota. Three weeks after the inoculation, cecal bile acid composition of these mice was examined. More than 80% of total bile acids was deconjugated in the cecal contents of ex-GF mice associated with human fecal dilutions of 10−2 or 10−6, or anaerobic growth from a dilution of 10−6. In these ex-GF mice, deoxycholic acid accounted for about 20% of total bile acids. In the cecal contents of ex-GF mice associated only with clostridia, unconjugated bile acids made up less than 40% of total bile acids, about half of those in other ex-GF groups. However, the percentage of deoxycholic acid in these mice was the same as that in the other groups. These results indicate that dominant anaerobic bacterial combination is efficient for deconjugation of primary bile acids, and that clostridia in the human feces may play an important role in 7α-dehydroxylation of unconjugated primary bile acids in the intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EG:

Eggerth Gagnon

GB:

gnotobiotic

GF:

germfree

PHP-LH-20:

piperidinohydroxypropyl Sephadex-LH-20

SPF:

specific pathogenfree

TS:

Trypticase soy

References

  1. Narisawa, T., Magadia, N.E., Weisburger, J.H., and Wynder, E.L. (1974) Promoting Effect of Bile Acids on Colon Carcinogenesis After Intrarectal Instillation of N-Methyl-N'-nitro-N-nitrosoguanidine in Rats, J. Natl. Cancer. Inst. 53, 1093–1097.

    PubMed  CAS  Google Scholar 

  2. Reddy, B.S., Watanabe, K., Weisburger, J.H., and Wynder, E.L. (1977) Promoting Effect of Bile Acids in Colon Carcinogenesis in Germ-free and Conventional F344 Rats, Cancer Res. 37, 3238–3242.

    PubMed  CAS  Google Scholar 

  3. Morotomi, M., Guillen, J.G., Legerfo, P., and Weinstein, I.B. (1990) Production of Diacylglycerol, an Activator of Protein Kinase C by Human Intestinal Microflora, Cancer Res. 50, 3595–3599.

    PubMed  CAS  Google Scholar 

  4. Stellwag, E.J., and Hylemon, P.B. (1976) Purification and Characterization of Bile Salt Hydrolase from Bacteroides fragilis subsp. fragilis, Biochim. Biophys. Acta 452, 165–176

    PubMed  CAS  Google Scholar 

  5. Masuda, N. (1980) Deconjugation of Bile Salts by Bacteroides and Clostridium, Microbiol. Immunol. 25, 1–11.

    Google Scholar 

  6. Archer, R.H., Chong, R., and Maddox, I.S. (1982) Hydrolysis of Bile Acid Conjugates by Clostridium bifermentans, Eur. J. Appl. Microbiol. Biotechnol. 14, 41–45.

    Article  CAS  Google Scholar 

  7. Grill, J.-P., Schneider, F., Crociani, J., and Ballongue, J. (1995) Purification and Characterization of Conjugated Bile Salt Hydrolase from Bifidobacterium longum BB536, Appl. Environ. Microbiol. 61, 2577–2582.

    PubMed  CAS  Google Scholar 

  8. Bortolini, O., Medici, A., and Poli, S. (1997) Biotransformations on Steroid Nucleus of Bile Acids, Steroids 62, 564–577.

    Article  PubMed  CAS  Google Scholar 

  9. Gustafsson, B.E., Midtvedt, T., and Norman, A. (1966) Isolated Fecal Microorganisms Capable of 7 α-Dehydroxylating Bile Acids, J. Exp. Med. 123, 413–432.

    Article  PubMed  CAS  Google Scholar 

  10. Midtvedt, T. (1967) Properties of Anaerobic Gram-positive Rods Capable of 7 α-Dehydroxylating Bile Acids, Acta Path. Microbiol. Scand. 71, 147–160.

    Google Scholar 

  11. Aries, V., and Hill, M.J. (1970) Degradation of Steroids by Intestinal Bacteria. II. Enzymes Catalyzing the Oxidoreduction of the 3, α-, 7 α-, and 12 α-Hydroxyl Group, Biochim. Biophys. Acta 202, 535–543.

    PubMed  CAS  Google Scholar 

  12. Dickinson, A.B., Gustafsson, B.E., and Norman, A. (1971) Determination of Bile Acid Conversion Potencies of Intestinal Bacteria by Screening in Vitro and Subsequent Establishment in Germfree Rats, Acta Path. Microbiol. Scand. Sect. B 79, 691–698.

    CAS  Google Scholar 

  13. Stellwag, E.J., and Hylemon, P.B. (1978) Characterization of 7 α-Dehydroxylase in Clostridium leptum, Am. J. Clin. Nutr. 31, 243–247.

    CAS  Google Scholar 

  14. Ferrari, A., Pacini, N., and Canzi, E. (1980) A Note on Bile Acids Transformations by Strains of Bifidobacterium, J. Appl. Bacteriol. 49, 193–197.

    PubMed  CAS  Google Scholar 

  15. Hirano, S., Nakamura, R., Tamaki, M., Masuda, N., and Oda, H. (1981) Isolation and Characterization of Thirteen Intestinal Microorganisms Capable of 7 α-Dehydroxylating Bile Acid, Appl. Environ. Microbiol. 41, 737–745.

    PubMed  CAS  Google Scholar 

  16. Takahashi, T., and Morotomi, M. (1994) Absence of Cholic Acid 7 α-Dehydroxylase Activity in the Strains of Lactobacillus and Bifidobacterium, J. Dairy Sci. 77, 3275–3286.

    Article  PubMed  CAS  Google Scholar 

  17. Hayakawa, S., and Hattori, T. (1970) 7 α-Dehydroxylation of Cholic Acid by Clostridium bifermentans Strain ATCC 9714 and Clostridium sordellii Strain NCIB 6929, FEBS Lett. 6, 131–133.

    Article  PubMed  CAS  Google Scholar 

  18. Ferrari, A., and Beretta, L. (1977) Activity on Bile Acids of a Clostridium bifermentans Cell-free Extract, FEBS Lett., 75, 163–165.

    Article  PubMed  CAS  Google Scholar 

  19. Stellwag, E.J., and Hylemon, P.B. (1979) 7 α-Dehydroxylation of Cholic Acid and Chenodeoxycholic Acid by Clostridium leptum, J. Lipid Res. 20, 325–333.

    PubMed  CAS  Google Scholar 

  20. Hylemon, P.B., Cacciapuoti, A.F., White, B.A., Whitehead, T.R., and Fricke, R.J. (1980) 7 α-Dehydroxylation of Cholic Acid by Cell Extracts of Eubacterium Species V.P.I. 12708, Am. J. Clin. Nutr. 33, 2507–2510.

    PubMed  CAS  Google Scholar 

  21. Archer, R.H., Maddox, I.S., and Chong, R. (1981) 7 α-Dehydroxylation of Cholic Acid by Clostridium bifermentans, Eur. J. Appl. Microbiol. Biotechnol. 12, 46–52.

    Article  CAS  Google Scholar 

  22. Takamine, F., and Imamura, T. (1995) Isolation and Characterization of Bile Acid 7-Dehydroxylating Bacteria from Human Feces, Microbiol. Immunol. 39, 11–18.

    PubMed  CAS  Google Scholar 

  23. Narushima, S., Itoh, K., Kuruma, K., and Uchida, K. (1999) Cecal Bile Acid Compositions in Gnotobiotic Mice Associated with Human Intestinal Bacteria with the Ability to Transform Bile Acids in Vitro, Microb. Ecol. Health Dis. 11, 55–60.

    Article  Google Scholar 

  24. Narushima, S., Itoh, K., Takamine, F., and Uchida, K. (1999) Absence of Cecal Secondary Bile Acids in Gnotobiotic Mice Associated with Two Human Intestinal Bacteria with the Ability to Dehydroxylate Bile Acids in Vitro, Microbiol. Immunol., 43, 893–897.

    PubMed  CAS  Google Scholar 

  25. Itoh, K., Ozaki, A., and Yamamoto, T. (1978) An Autoclavable Stainless Steel Isolator for Small Scale Gnotobiotic Experiments, Exp. Anim. 27, 13–16.

    CAS  Google Scholar 

  26. Mitsuoka, T., Sega, T., and Yamamoto, S. (1965) Eine Verbesserte Methodik der Qualitativen und Quantativen Analyse der Darmflora von Menschen und Tieren, Zentralbl. Bacteriol. Parasitenkd. Infektionskrankh. Hyg. I. Orig. A 195, 455–469.

    CAS  Google Scholar 

  27. Itoh, K., and Mitsuoka, T. (1980) Production of Gnotobiotic Mice with Normal Physiological Functions. I. Selection of Useful Bacteria from Faeces of Conventional Mice, Z. Versuchstierkd. 22, 173–178.

    PubMed  CAS  Google Scholar 

  28. Goto, J., Hasegawa, M., Kato, H., and Nambara, T. (1978) A New Method for Simultaneous Determination of Bile Acids in Human Bile Without Hydrolysis, Clin. Chim. Acta. 87, 141–147.

    Article  PubMed  CAS  Google Scholar 

  29. Okuyama, S., Kokubun, N., Higashidate, S. Uemura D. and Hirata, Y. (1979) A New Analytical Method of Individual Bile Acids Using High Performance Liquid Chromatography and Immobilized 3 α-Hydroxysteroid Dehydrogenase in Column Form, Chem. Lett. 1443–1446.

  30. Mitsuoka, T., Ohno, K., Benno, Y., Suzuki, K., and Namba, K. (1976) Die Faekal-flora bei Menschen. IV. Mitteilung: Vergleich des Neuentwickelten Verfahrens mit dem Bisheringen Üblichen Verfahren zur Darmfloraanalyse, Zentralbl. Bacteriol. Parasitenkd. Infektionskrankh. Hyg. I. Orig. A. 234, 219–233.

    CAS  Google Scholar 

  31. Ferrari, A., Padini, N., Canzi, E., and Bruno, F. (1980) Prevalence of Oxygen-Intolerant Microorganisms in Primary Bile Acid 7 α-Dehydroxylating Mouse Intestinal Microflora, Current Microbiol. 4, 257–260.

    CAS  Google Scholar 

  32. Chikai, T., Nakao, H., and Uchida, K. (1987) Deconjugation of Bile Acids by Human Intestinal Bacteria Implanted in Germa-free Rats, Lipids 22, 669–671.

    PubMed  CAS  Google Scholar 

  33. Kawamoto, K., Horibe, I., and Uchida, K. (1989) Purification and Characterization of New Hydrolase for Conjugated Bile Acids, Chenodeoxycholyltaurine Hydrolase, from Bacteroides vulgatus, J. Biochem. 106, 1049–1053.

    PubMed  CAS  Google Scholar 

  34. Sacquet, E.C., Gadelle, D.P., Riottot, M.J., and Raibaud, P.M. (1984) Absence of Transformation of β-Muricholic Acid by Human Microflora Implanted in the Digestive Tracts of Germfree Male Rats, Appl. Environ. Microbiol. 47, 1167–1168.

    PubMed  CAS  Google Scholar 

  35. Itoh, K., Urano, T., and Mitsuoka, T. (1986) Colonization Resistance Against Pseudomonas aeruginosa in Gnotobiotic Mice, Lab. Anim. 20, 197–201.

    PubMed  CAS  Google Scholar 

  36. Koopman, J.P., and Janssen, F.G.J. (1975) The Suitability for Rats of an Intestinal Microflora of Mice Tested Under Practical Circumstances, Z. Versuchstierkd. 17, 208–211.

    PubMed  CAS  Google Scholar 

  37. Uchida, K., Satoh, T., Narushima, S., Itoh, K., Takase, H., Kuruma, K., Nakao, H., Yamaga, N., and Yamada, K. (1999) Transformation of Bile Acid and Sterols by Clostridia (fusiform bacteria) in Wistar Rats, Lipids 34, 269–273.

    PubMed  CAS  Google Scholar 

  38. Batta, A.K., Salen, G., Arora, R., Shefer, S., Batta, M., and Person, A. (1990) Side Chain Conjugation Prevents Bacterial 7-Dehydroxylation of Bile Acids, J. Biol. Chem. 256, 10925–10928.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kikuji Iton.

About this article

Cite this article

Narushima, S., Iton, K., Kuruma, K. et al. Composition of cecal bile acids in ex-germfree mice inoculated with human intestinal bacteria. Lipids 35, 639–644 (2000). https://doi.org/10.1007/s11745-000-0568-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-000-0568-0

Keywords

Navigation