Skip to main content
Log in

Alterations in 3-hydroxy-3-methylglutaryl-CoA reductase mRNA concentration in cultured chick aortic smooth muscle cells

  • Article
  • Published:
Lipids

Abstract

We observed and compared alterations in 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase at the transcriptional level in unsynchronized, three-passage cultures of smooth-muscle cells from the aorta of chicks fed on a control diet (C-SMC) and those of chicks fed on a similar diet plus cholesterol (Ch-SMC). Alterations in reductase mRNA concentrations in senescent cultures were much lower. We used a modification of the competitive (c) reverse transcription polymerase chain reaction method, using a Thermus thermophilus DNA polymerase (Tth pol) to quantify the very scarce species of HMG-CoA reductase mRNA in samples of cytoplasmic SMC mRNA. We cloned and sequenced a 199 bp cDNA fragment of chicken HMG-CoA reductase, which encoded a region of 66 amino acids belonging to the catalytic domain of the enzyme. HMG-CoA reductase mRNA concentrations from young C-SMC cultures rose 3.89-fold 4 h after the change of medium and returned to base levels between 8 to 12 h afterward. Concentrations in Ch-SMC cultures increased less (2.36-fold) 8 h after the change to fresh medium. Increases in reductase mRNA in senescent cultures of Ch-SMC and C-SMC measured under similar conditions were only 1.28- and 1.39-fold, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

(c) RT-PCR:

competitive reverse transcription-polymerase chain reaction

DMEM:

Dulbecco's modification of Eagle's medium

dNTP:

deoxy nucleotide 5′-triphosphate

FBS:

fetal bovine serum

HMG-CoA:

3-hydroxy-3-methylglutaryl-CoA

PBS:

phosphate-buffered saline

SMC:

smooth muscle cell

UV:

ultraviolet

References

  1. Rodwell, V.W., Nordstrom, J.L., and Mitschelen, J.J. (1976) Regulation of HMG-CoA Reductase, Adv. Lipid Res. 14, 1–74.

    PubMed  CAS  Google Scholar 

  2. Chin, D.J., Gil, G., Faust, J.R., Goldstein, J.L., Browun, M.S., and Luskey, K.L. (1985) Sterols Accelerate Degradation of Hamster 3-Hydroxy-3-methylglutaryl-Coenzyme A Reductase Encoded by Constitutively Expressed cDNA, Mol. Cell Biol. 5, 634–641.

    PubMed  CAS  Google Scholar 

  3. Choi, J.W., and Peffley, D.M. (1995) 3′-Untranslated Sequences Mediate Post-transcriptional Regulation of 3-Hydroxy-3-methylglutaryl-CoA Reductase mRNA by 25-Hydroxycholesterol, Biochem. J. 307, 233–238.

    PubMed  CAS  Google Scholar 

  4. Simonet, W.S., and Ness, G.C. (1989) Post-transcriptional Regulation of 3-Hydroxy-3-methylglutaryl-Coenzyme A Reductase mRNA in Rat Liver, J. Biol. Chem. 264, 569–573.

    PubMed  CAS  Google Scholar 

  5. Mitropoulos, K.A. (1983) Molecular Control of HMG-CoA Reductase: The Role of Nonesterified Cholesterol, in 3-Hydroxy-3-methylglutaryl CoA Reductase (Sabine, J.R., ed.) pp. 107–127, CRC Press, Boca Raton.

    Google Scholar 

  6. García-Gonzalez, M., Segovia, J.L., and Alejandre, M.J. (1992) Homeostatic Restoration of Microsomal Lipids and Cholesterol Acyltransferase in Chick Liver, Mol. Cell. Biochem. 115, 173–178.

    Article  PubMed  Google Scholar 

  7. Kumagai, H., Chun, M.T., and Simoni, R.D. (1995) Molecular Disection of the Role of the Membrane Domain in the Regulated Degradation of 3-Hydroxy-3-methylglutary Coenzyme A Reductase, J. Biol. Chem. 270, 19107–19113.

    Article  PubMed  CAS  Google Scholar 

  8. Beg, Z., and Brewer, H.B. (1981) Regulation of Liver 3-Hydroxy-3-methylglutaryl-CoA Reductase, Curr. Top. Cell Regul. 20, 139–184.

    PubMed  CAS  Google Scholar 

  9. Clarke, P.R., and Hardie, D.G. (1990) Regulation of HMG-CoA Reductase: Identification of the Site Phosphorylated by the AMP-Activated Protein Kinase in vitro and in Intact Rat Liver, EMBO J. 9, 2439–2446.

    PubMed  CAS  Google Scholar 

  10. Goldstein, J.L., and Brown, M.S. (1990) Regulation of Mevalonate Pathway, Nature 343, 425–430.

    Article  PubMed  CAS  Google Scholar 

  11. Vallet, S.M., Sanchez, H.B., Rosenfeld, J.M., and Osborne, T.F. (1996) A Direct Role for Sterol Regulatory Element Binding Protein in Activation of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase Gene, J. Biol. Chem. 271, 12247–12253.

    Article  Google Scholar 

  12. Tavangar, K., and Kraemer, F.B. (1988) The Regulation of Hydroxymethylglutaryl-CoA Reductase in Cultured Cells, Biochim. Biophys. Acta 970, 251–261.

    Article  PubMed  CAS  Google Scholar 

  13. Quesney-Huneeus, V., Wiley, M.H., and Siperstein, M.D. (1979) Essential Role for Mevalonate Synthesis in DNA Replication, Proc. Natl. Acad. Sci. USA 76, 5056–5060.

    Article  PubMed  CAS  Google Scholar 

  14. Quesney-Huneeus, V., Galick, H.A., Siperstein, M.D., Erickson, S.K., Spencer, T.A., and Nelson, J.A. (1983) The Dual Role of Mevalonate in the Cell Cycle, J. Biol. Chem. 258, 378–385.

    PubMed  CAS  Google Scholar 

  15. Carazo, A., Alejandre, M.J., Diaz, R., Rios, A., Castillo, M., and Linares, A. (1998) Changes in Cultured Arterial Smooth Muscle Cells Isolated from Chicks Upon Cholesterol Feeding, Lipids 33, 181–190.

    PubMed  CAS  Google Scholar 

  16. Bolton, M.C., Dudhja, J., and Bayliss, M.T. (1996) Quantification of Aggrecan and Link-Protein mRNA in Human Articular Cartilage of Different Ages by Competitve Reverse Transcriptase-PCR, Biochem. J. 319, 489–498.

    PubMed  CAS  Google Scholar 

  17. Habenicht, A.J.R., Glonset, J.A., and Ross, R. (1980) Relation of Cholesterol and Mevalonic Acid to the Cell Cycle in Smooth Muscle and Swiss 3T3 Cells Stimulated to Divide by Platelet-derived Growth Factor, J. Biol. Chem. 255, 5134–5140.

    PubMed  CAS  Google Scholar 

  18. Ross, R. (1971) The Smooth Muscle Cell II. Growth of Smooth Muscle in Culture and Formation of Elastic Fibers, J. Cell Biol. 50, 172–186.

    Article  PubMed  CAS  Google Scholar 

  19. Chamley-Campbell, J.H., Campbell, G.R., and Ross, R. (1979) The Smooth Muscle Cell in Culture, Physiol. Rev. 58, 1–61.

    Google Scholar 

  20. Hanon, E., Vanderplasschen, A., and Pastoret, P.P. (1996) The Use of Flow Cytometry for Concomitant Detection of Apoptosis and Cycle Analysis, Biochem. 2, 25–27.

    Google Scholar 

  21. Chomczinski, P., and Sacchi, N. (1987) Single-Step Methods of RNA Isolation by Acid Guanidinium Thiocyanate-Phenol-Chloroform Extraction, Anal. Biochem. 162, 156–159.

    Google Scholar 

  22. Jiang, Y.H., Davidson, L.A., Lupton, J.R., and Chapkin, R.S. (1996) Rapid Competitive PCR Determination of Relative Gene Expression in Limiting Tissue Samples, Clin. Chem. 42, 227–231.

    PubMed  CAS  Google Scholar 

  23. Sanger, F., Nicklen, S., and Couldson, A.R. (1977) DNA Sequencing with Chain-Terminating Inhibitors, Proc. Natl. Acad. Sci. USA 74, 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  24. Myers, T.W., and Geldfand, D.H. (1991) Reverse Transcription and DNA Amplification by a Thermus thermophilus DNA Polymerase, Biochemistry 30, 7661–7666.

    Article  PubMed  CAS  Google Scholar 

  25. Gebhardt, A., Peters, A., Gerding, D., and Niendorf, A. (1994) Rapid Quantitation of mRNA Species in Ethidium Bromide-stained Gels of Competitive RT-PCR Products, J. Lipid Res. 35, 977–981.

    Google Scholar 

  26. Raeymaekers, L. (1993) Quantitative PCR: Theoretical Considerations with Practical Implications, Anal. Biochem. 214, 582–585.

    Article  PubMed  CAS  Google Scholar 

  27. Brown, M.S., Dana, S.E., and Goldstein, J.L. (1973) Regulation of 3-Hydroxy-3-methyl-glutaryl Coenzyme A Reductase Activity in Human Fibroblasts by Lipoproteins, Proc. Natl. Acad. Sci. USA 70, 2162–2166.

    Article  PubMed  CAS  Google Scholar 

  28. Chin, D.J., Gil, G., Russell, D.W., Liscum, L., Luskey, K.L., Basu, S.K., Okayama, H., Berg, P., Golstein, J.L., and Brown, M.S. (1984) Nucleotide Sequence of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase, A Glycoprotein of Endoplasmic Reticulum, Nature 308, 613–617.

    Article  PubMed  CAS  Google Scholar 

  29. Liscum, L., Cummings, C., Anderson, R.G.W., DeMartino, G.N., Goldstein, J.L., and Brown, M.S. (1983) 3-Hydroxy-3-methylglutary Coenzyme A Reductase: A Transmembrane Glycoprotein of the Endoplasmic Reticulum with N-linked “High-mannose” Oligosaccharides, Proc. Natl. Acad. Sci. USA 80, 7165–7169.

    Article  PubMed  CAS  Google Scholar 

  30. Cohen, D.C., Massoglia, S.L., and Gospodarowicz, D. (1982) Correlation Between Two Effects of High Density Lipoproteins on Vascular Endothelial Cells. The Induction of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase Activity and the Support of Cellular Proliferation, J. Biol. Chem. 257, 9429–9437.

    PubMed  CAS  Google Scholar 

  31. Chen, H.W. (1981) The Activity of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase and the Rate of Sterol Synthesis Diminish in Cultures with High Cell Density, J. Cell Physiol. 108, 91–97.

    Article  PubMed  CAS  Google Scholar 

  32. Harwood, H.J., Jr., Schneider, M., and Stacpoole, P.W. (1984) Measurement of Human Leukocyte Microsomal HMG-CoA Reductase Activity, J. Lipid Res. 25, 967–978.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Linares.

About this article

Cite this article

Carazo, A., Alejandre, M.J., Suarez, M.D. et al. Alterations in 3-hydroxy-3-methylglutaryl-CoA reductase mRNA concentration in cultured chick aortic smooth muscle cells. Lipids 35, 587–593 (2000). https://doi.org/10.1007/s11745-000-0560-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-000-0560-8

Keywords

Navigation