, Volume 35, Issue 3, pp 249–255 | Cite as

Cloning and characterization of the Dictyostelium discoideum cycloartenol synthase cDNA

  • Sharotka M. Godzina
  • Martha A. Lovato
  • Michelle M. Meyer
  • Kimberly A. Foster
  • William K. Wilson
  • Wei Gu
  • Eugenio L. de Hostos
  • Seiichi P. T. Matsuda


Cycloartenol synthase converts oxidosqualene to cycloartenol, the first carbocyclic intermediate en route to sterols in plants and many protists. Presented here is the first cycloartenol synthase gene identified from a protist, the cellular slime mold Dictyostelium discoideum. The cDNA encodes an 81-kDa predicted protein 50–52% identical to known higher plant cycloartenol synthases and 40–49% identical to known lanosterol synthases from fungi and mammals. The encoded protein expressed in transgenic Saccharomyces cerevisiae converted synthetic oxidosqualene to cycloartenol in vitro. This product was characterized by 1H and 13C nuclear magnetic resonance and gas chromatography-mass spectrometry. The predicted protein sequence diverges sufficiently from the known cycloartenol synthase sequences to dramatically reduce the number of residues that are candidates for the catalytic difference between cycloartenol and lanosterol formation.


Lanosterol Dictyostelium Discoideum Euglena Gracilis Cycloartenol Triterpene Alcohol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.











































Alicyclobacillus acidocaldarius squalene-hopene cyclase


complementary deoxyribonucleic acid


gas chromatography/mass spectrometry


heteronuclear single quantum coherence


kilobase pair


nuclear magnetic resonance


polymerase chain reaction


polyethylene glycol


synthetic complete medium lacking uracil with 2% galactose, 13 mg/L heme, 20 mg/L ergosterol, 0.5% Tween 80


Saccharomyces cerevisiae lanosterol synthase


synthetic complete medium lacking uracil with 2% glucose, 13 mg/L heme, 20 mg/L ergosterol, 0.5% Tween 80


squalene-hopene cyclase


thin-layer chromatography


1% yeast extract, 2% peptone, 2% glucose, 13 mg/L heme, 20 mg/L ergosterol, and 0.5% Tween 80


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nes, W.R., and McKean, M.L. (1977) Biochemistry of Steroids and Other Isopentenoids, p. 690, University Park Press, Baltimore.Google Scholar
  2. 2.
    Abe, I., Rohmer, M., and Prestwich, G.D. (1993) Enzymatic Cyclization of Squalene and Oxidosqualene to Sterols and Triterpenes, Chem. Rev. 93, 2189–2206.CrossRefGoogle Scholar
  3. 3.
    Matsuda, S.P.T. (1998) On the Diversity of Oxidosqualene Cyclases, in Biochemical Principles and Mechanisms of Biosynthesis and Biodegradation of Polymers (Steinbüchel, A., ed.), pp. 300–307, Wiley-VCH, Weinheim.Google Scholar
  4. 4.
    Corey, E.J., and Ortiz de Montellano, P.R. (1967) Enzymic Synthesis of β-Amyrin from 2,3-Oxidosqualene, J. Am. Chem. Soc. 89, 3362–3363.PubMedCrossRefGoogle Scholar
  5. 5.
    Rees, H.H., Goad, L.J., and Goodwin, T.W. (1968) Cyclization of 2,3-Oxidosqualene to Cycloartenol in a Cell-Free System from Higher Plants, Tetrahedron Lett. 9, 723–725.CrossRefGoogle Scholar
  6. 6.
    Gibbons, G.F., Goad, L.J., Goodwin, T.W., and Nes, W.R. (1971) Concerning the Role of Lanosterol and Cycloartenol in Steroid Biosynthesis, J. Biol. Chem. 246, 3967–3976.PubMedGoogle Scholar
  7. 7.
    Corey, E.J., Cheng, H.M., Baker, C.H., Matsuda, S.P.T., Li, D., and Song, X.L. (1997) Studies on the Substrate Binding Segments and Catalytic Action of Lanosterol Synthase—Affinity Labeling with Carbocations Derived from Mechanism-based Analogs of 2,3-Oxidosqualene and Site-directed Mutagenesis Probes, J. Am. Chem. Soc. 119, 1289–1296.CrossRefGoogle Scholar
  8. 8.
    Buntel, C.J., and Griffin, J.H. (1992) Nucleotide and Deduced Amino Acid Sequences of the Oxidosqualene Cyclase from Candida albicans, J. Am. Chem. Soc. 114, 9711–9713.CrossRefGoogle Scholar
  9. 9.
    Roessner, C.A., Min, C., Hardin, S.H., Harris-Haller, L.W., Mc Collum, J.C., and Scott, A.I. (1993) Sequence of the Candida albicans erg7 Gene, Gene 127, 149–150.PubMedCrossRefGoogle Scholar
  10. 10.
    Corey, E.J., Matsuda, S.P.T., and Bartel, B. (1994) Molecular Cloning, Characterization, and Overexpression of ERG7, the Saccharomyces cerevisiae Gene Encoding Lanosterol Synthase, Proc. Natl. Acad. Sci. USA 91, 2211–2215.PubMedCrossRefGoogle Scholar
  11. 11.
    Shi, Z., Buntel, C.J., and Griffin, J.H. (1994) Isolation and Characterization of the Gene Encoding 2,3-Oxidosqualene-Lanosterol Cyclase from Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 91, 7370–7374.PubMedCrossRefGoogle Scholar
  12. 12.
    Kusano, M., Shibuya, M., Sankawa, U., and Ebizuka, Y. (1995) Molecular Cloning of cDNA Encoding Rat 2,3-Oxidosqualene:Lanosterol Cyclase, Biol. Pharm. Bull. 18, 195–197.PubMedGoogle Scholar
  13. 13.
    Abe, I., and Prestwich, G.D. (1995) Molecular Cloning, Characterization, and Functional Expression of Rat Oxidosqualene Cyclase cDNA, Proc. Natl. Acad. Sci. USA 92, 9274–9278.PubMedCrossRefGoogle Scholar
  14. 14.
    Baker, C.H., Matsuda, S.P.T., Liu, D.R., and Corey, E.J. (1995) Molecular Cloning of the Human Gene Encoding Lanosterol Synthase from a Liver cDNA Library, Biochem. Biophys. Res. Commun. 213, 154–160.PubMedCrossRefGoogle Scholar
  15. 15.
    Sung, C.-K., Shibuya, M., Sankawa, U., and Ebizuka, Y. (1995) Molecular Cloning of cDNA Encoding Human Liver Lanosterol Synthase, Biol. Pharm. Bull. 18, 1459–1461.PubMedGoogle Scholar
  16. 16.
    Corey, E.J., Matsuda, S.P.T., Baker, C.H., Ting, A.Y., and Cheng, H. (1996) Molecular Cloning of a Schizosaccharomyces pombe cDNA Encoding Lanosterol Synthase and Investigation of Conserved Tryptophan Residues, Biochem. Biophys. Res. Commun. 219, 327–331.PubMedCrossRefGoogle Scholar
  17. 17.
    Corey, E.J., Matsuda, S.P.T., and Bartel, B. (1993) Isolation of an Arabidopsis thaliana Gene Encoding Cycloartenol Synthase by Functional Expression in a Yeast Mutant Lacking Lanosterol Synthase by the Use of a Chromatographic Screen, Proc. Natl. Acad. Sci. USA 90, 11628–11632.PubMedCrossRefGoogle Scholar
  18. 18.
    Morita, M., Shibuya, M., Lee, M.-S., Sankawa, U., and Ebizuka, Y. (1997) Molecular Cloning of Pea cDNA Encoding Cycloartenol Synthase and Its Functional Expression in Yeast, Biol. Pharm. Bull. 20, 770–775.PubMedGoogle Scholar
  19. 19.
    Kushiro, T., Shibuya, M., and Ebizuka, Y. (1998) β-Amyrin Synthase. Cloning of Oxidosqualene Cyclase That Catalyzes the Formation of the Most Popular Triterpene Among Higher Plants, Eur. J. Biochem. 256, 238–244.PubMedCrossRefGoogle Scholar
  20. 20.
    Hayashi, H., Hiraoka, N., Ikeshiro, Y., Kushiro, T., Morita, M., Shibuya, M., and Ebizuka, Y. (1999) Molecular Cloning and Characterization of a cDNA for Glycyrrhiza glabra Cycloartenol Synthase, GenBank accession number AB025968.Google Scholar
  21. 21.
    Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (eds.) (1999) Current Protocols in Molecular Biology, Wiley-Interscience, New York, p. 13.1.2.Google Scholar
  22. 22.
    Amasino, R.M. (1986) Acceleration of Nucleic Acid Hybridization Rate by Polyethylene Glycol, Anal. Biochem. 152, 304–307.PubMedCrossRefGoogle Scholar
  23. 23.
    Rees, H.H., Goad, L.J., and Goodwin, T.W. (1969) 2,3-Oxidosqualene Cycloartenol Cyclase from Ochromonas malhamensis, Biochim. Biophys. Acta 176, 892–894.PubMedGoogle Scholar
  24. 24.
    Brandt, R.D., Pryce, R.J., Anding, C., and Ourisson, G. (1970) Sterol Biosynthesis in Euglena gracilis Z., Eur. J. Biochem. 17, 344–349.PubMedCrossRefGoogle Scholar
  25. 25.
    Anding, C., Brandt, R.D., and Ourisson, G. (1971) Sterol Biosynthesis in Euglena gracilis Z., Eur. J. Biochem. 24, 259–263.PubMedCrossRefGoogle Scholar
  26. 26.
    Raederstorff, D., and Rohmer, M. (1987) The Action of the Systemic Fungicides Tridemorph and Fenpropimorph on Sterol Biosynthesis by the Soil Amoeba Acanthamoeba polyphaga, Eur. J. Biochem. 164, 421–426.PubMedCrossRefGoogle Scholar
  27. 27.
    Raederstorff, D., and Rohmer, M. (1987) Sterol Biosynthesis via Cycloartenol and Other Biochemical Features Related to Photosynthetic Phyla in the Amoebae Naegleria lovaniensis and Naegleria gruberi, Eur. J. Biochem. 164, 427–434.PubMedCrossRefGoogle Scholar
  28. 28.
    Nes, W.D., Norton, R.A., Crumley, F.G., Madigan, S.J., and Katz, E.R. (1990) Sterol Phylogenesis and Algal Evolution, Proc. Natl. Acad. Sci. USA 87, 7565–7569.PubMedCrossRefGoogle Scholar
  29. 29.
    Nes, W.D., Koike, K., Jia, Z.H., Sakamoto, Y., Satou, T., Nikaido, T., and Griffin, J.F. (1998) 9β,19-Cyclosterol Analysis by 1H and 13C NMR, Crystallographic Observations, and Molecular Mechanics Calculations, J. Am. Chem. Soc. 120, 5970–5980.CrossRefGoogle Scholar
  30. 30.
    Radics, L., Kajtar-Peredy, M., Corsano, S., and Standoli, L. (1975) Carbon-13 NMR Spectra of Some Polycyclic Triterpenoids, Tetrahedron Lett. 48, 4287–4290.CrossRefGoogle Scholar
  31. 31.
    Shimizu, N., Itoh, T., Saito, M., and Matsumoto, T. (1984) Acid-Catalyzed Isomerization of Cycloartane Triterpene Alcohols. The Formation of Cucurbitane- and Lanostane-Isomers, J. Org. Chem. 49, 709–712.CrossRefGoogle Scholar
  32. 32.
    Venkatramesh, M., and Nes, W.D. (1995) Novel Sterol Transformations Promoted by Saccharomyces cerevisiae Strain GL7—Evidence for 9-β,19-Cyclopropyl to 9(11) Isomerization and for 14-Demethylation to 8,14 Sterols, Arch. Biochem. Biophys. 324, 189–199.PubMedCrossRefGoogle Scholar
  33. 33.
    Poralla, K. (1994) The Possible Role of a Repetitive Amino Acid Motif in Evolution of Triterpenoid Cyclases, Bioorg. Med. Chem. Lett. 4, 285–290.CrossRefGoogle Scholar
  34. 34.
    Poralla, K., Hewelt, A., Prestwich, G.D., Abe, I., Reipen, I., and Sprenger, G. (1994) A Specific Amino Acid Repeat in Squalene and Oxidosqualene Cyclases, Trends Biochem. Sci. 19, 157–158.PubMedCrossRefGoogle Scholar
  35. 35.
    Herrera, J.B.R., Bartel, B., Wilson, W.K., and Matsuda, S.P.T. (1998) Cloning and Characterization of the Arabidopsis thaliana Lupeol Synthase Gene, Phytochemistry 49, 1905–1911.PubMedCrossRefGoogle Scholar
  36. 36.
    Ochs, D., Kaletta, C., Entian, K.-D., Beck-Sickinger, A., and Poralla, K. (1992) Cloning, Expression, and Sequencing of Squalene-Hopene Cyclase, a Key Enzyme in Triterpenoid Metabolism, J. Bacteriol. 174, 298–302.PubMedGoogle Scholar
  37. 37.
    Wendt, K.U., Poralla, K., and Schulz, G.E. (1997) Structure and Function of a Squalene Cyclase, Science 277, 1811–1815.PubMedCrossRefGoogle Scholar
  38. 38.
    Wendt, K.U., Lenhart, A., and Schulz, G.E. (1999) The Structure of the Membrane Protein Squalene-Hopene Cyclase at 2.0 Angstrom Resolution, J. Mol. Biol. 286, 175–187.PubMedCrossRefGoogle Scholar
  39. 39.
    Sato, T., Kanai, Y., and Hoshino, T. (1998) Overexpression of Squalene-Hopene Cyclase by the Pet Vector in Escherichi coli and First Identification of Tryptophan and Aspartic Acid Residues Inside the QW Motif as Active Sites, Biosci. Biotechnol. Biochem. 62, 407–411.PubMedCrossRefGoogle Scholar
  40. 40.
    Feil, C., Sussmuth, R., Jung, G., and Poralla, K. (1996) Site-Directed Mutagenesis of Putative Active-Site Residues in Squalene-Hopene Cyclase, Eur. J. Biochem. 242, 51–55.PubMedCrossRefGoogle Scholar
  41. 41.
    Merkofer, T., Pale-Grosdemange, C., Wendt, K.U., Rohmer, M., and Poralla, K. (1999) Altered Product Pattern of a Squalene-Hopene Cyclase by Mutagenesis of Active Site Residues, Tetrahedron Lett. 40, 2121–2124.CrossRefGoogle Scholar

Copyright information

© AOCS Press 2000

Authors and Affiliations

  • Sharotka M. Godzina
    • 1
  • Martha A. Lovato
    • 2
  • Michelle M. Meyer
    • 1
    • 2
  • Kimberly A. Foster
    • 1
  • William K. Wilson
    • 1
  • Wei Gu
    • 1
  • Eugenio L. de Hostos
    • 1
  • Seiichi P. T. Matsuda
    • 1
    • 2
  1. 1.Department of Biochemistry and Cell BiologyRice UniversityHoustonTexas
  2. 2.Department of ChemistryRice UniversityHouston

Personalised recommendations