Skip to main content
Log in

Fatty acid transport across lipid bilayer planar membranes

  • Published:
Lipids

Abstract

The transport of palmitic acid (PA) across planar lipid bilayer membranes was measured using a high specific activity [14C]palmitate as tracer for PA. An all-glass trans chamber was employed in order to minimize adsorbance of PA onto the surface. Electrically neutral (diphytanoyl phosphatidylcholine) and charged (Azolectin) planar bilayers were maintained at open electric circuit. We found a permeability to PA of (8.8±1.9)×10−6 cm s−1 (n=15) in neutral and of (10.3±2.2)×10−6 cm s−1 (n=5) in charged bilayers. These values fall within the order of magnitude of those calculated from desorption constants of PA in different vesicular systems. Differences between data obtained from planar and vesicular systems are discussed in terms of the role of solvent, radius of curvature, and pH changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cpm:

counts per minute

DPPC:

diphytanoyl phosphatidylcholine

FA:

fatty acid

GUV:

giant unilamellar vesicle

LUV:

large unilamellar vesicle

PA:

palmitic acid

PBM:

planar bilayer membranes

SUV:

small unilamellar vesicle

Trizma:

tris(hydroxymethyl)aminomethane

UV:

unilamellar vesicles

References

  1. Hannigan, G.E., and Williams, B.R.G. (1991) Signal Transduction by Interferon-α Through Arachidonic Acid Metabolism, Science 251, 204–207.

    Article  PubMed  CAS  Google Scholar 

  2. Ordway, R.W., Walsh, J.V., Jr., and Singer, J.J. (1989) Arachidonic Acid and Other Fatty Acids Directly Activate Potassium Channels in Smooth Muscle Cells, Science 244, 1176–1179.

    Article  PubMed  CAS  Google Scholar 

  3. Philipson, K.D., and Ward, R. (1985) Effects of Fatty Acids on Na+−Ca2+ Exchange and Ca2+ Permeability of Cardiac Sarcolemmal Vesicles, J. Biol. Chem. 256, 9666–9671.

    Google Scholar 

  4. Bihain, B.E., Deckelbaum, R.J., Yen, F.T., Gleeson, A.M., Carpentier Y.A., and White, L.D. (1989) Unesterified Fatty Acids Inhibit the Binding of Low Density Lipoproteins to the Human Fibroblast Low Density Lipoprotein Receptor, J. Biol. Chem. 264, 17316–17323.

    PubMed  CAS  Google Scholar 

  5. Skulachev, V.P. (1991) Fatty Acid Circuit as a Physiological Mechanism of Uncoupling of Oxidative Phosphorylation. Review, FEBS Lett. 294, 158–162.

    Article  PubMed  CAS  Google Scholar 

  6. Kamp, F., and Hamilton, J.A. (1993) Movement of Fatty Acids, Fatty Acid Analogues, and Bile Acids Across Phospholipid Bilayers, Biochemistry 32, 11074–11086.

    Article  PubMed  CAS  Google Scholar 

  7. Kamp, F., Zakim, D., Zhang, F., Noy, N., and Hamilton, J.A. (1995) Fatty Acid Flip-Flop in Phospholipid Bilayers is Extremely Fast, Biochemistry 34, 11928–11937.

    Article  PubMed  CAS  Google Scholar 

  8. Kleinfeld, A.M., Chu, P., and Romero, C. (1997) Transport of Long-Chain Fatty Acids Across Lipid Bilayer Membranes Indicates That Transbilayer Flip-Flop Is Rate Limiting, Biochemistry 36, 14146–14158.

    Article  PubMed  CAS  Google Scholar 

  9. Gutknecht, J. (1988) Proton Condutance Caused by Long-Chain Fatty Acids in Phospholipid Bilayer Membranes, J. Membrane Biol. 106, 83–93.

    Article  CAS  Google Scholar 

  10. Mailman, D., and Rose, C. (1990) Binding and Solubility of Oleic Acid to Laboratory Materials: a Possible Artifact, Life Sci. 47, 1737–1744.

    Article  PubMed  CAS  Google Scholar 

  11. Kagawa, Y., and Racker, E. (1966) Partial Resolution of the Enzymes Catalyzing Oxidative Phosphorylation IX. Reconstruction of Oligomycin-Sensitive Adenosine Triphosphatase, J. Biol. Chem. 241, 2467–2474.

    PubMed  CAS  Google Scholar 

  12. McLaughlin, S.G.A., Szabo, G., and Eisenman, G. (1971) Divalent Ions and the Surface Potential of Charged Phospholipid Membranes, J. Gen. Physiol. 58, 667–687.

    Article  PubMed  CAS  Google Scholar 

  13. Mueller, P., Rudin, H.T., Tien, T., and Wescott, W.C. (1963) Methods for the Formation of Single Bimolecular Lipid Membranes in Aqueous Solutions, J. Phys. Chem. 67, 534–535.

    Article  CAS  Google Scholar 

  14. Procopio, J., Varanda, W.A., and Fornes, J.A. (1982) A Quartz Cell for Studying Planar Lipid Bilayers, Biochim. Biophys. Acta 688, 808–810.

    Article  PubMed  CAS  Google Scholar 

  15. Hamilton, J.A. (1998) Fatty Acid Transport: Difficult or Easy? J. Lipid Res. 39, 467–481.

    PubMed  CAS  Google Scholar 

  16. Zhang, F., Kamp, F., and Hamilton, J.A. (1996) Dissociation of Long and Very Long Chain Fatty Acids from Phospholipid Bilayers, Biochemistry 35, 16055–16060.

    Article  PubMed  CAS  Google Scholar 

  17. Cevc, G., and Marsh, D. (1987) Phospholipid Bilayers: Physical Principles and Models, Vol. 5 of Cell Biology: A Series of Monographs (Bittar, E.E., ed.), pp. 182–183, John Wiley & Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Procopio.

About this article

Cite this article

Romano-Fontes, L.G., Curi, R., Peres, C.M. et al. Fatty acid transport across lipid bilayer planar membranes. Lipids 35, 31–34 (2000). https://doi.org/10.1007/s11745-000-0491-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-000-0491-4

Keywords

Navigation