Advertisement

Journal of Surfactants and Detergents

, Volume 20, Issue 6, pp 1351–1358 | Cite as

The Nucleation and Growth of Succinic Acid in the Presence of Surfactants

  • Qiushuo YuEmail author
  • Xiaorui Li
  • Xiaoyan Qiao
  • Min Qi
Original Article

Abstract

Impurities may have a marked effect on crystal nucleation and growth. To further understand the role of impurities, the crystallization (solubility, nucleation, growth) of succinic acid in water in the presence of surfactants such as polyethylene glycol sorbitan monooleate (Tween 80), cetyltrimethylammonium bromide (CTAB) and sodium dodecylbenzenesulfonate (SDBS) was investigated experimentally. The presence of CTAB, SDBS or Tween 80 had little influence on succinic acid solubility but did slow crystallization kinetics. The surfactant monomer in solution, not micelles, proved to play the primary role affecting nucleation. The nucleation inhibition by surfactant was analyzed on the base of a two-step nucleation process: (1) the inhibition on the formation and growth of succinic acid nanodroplets and (2) the influence on succinic acid single nucleus (SASN) in secondary nucleation. SASN may play important role in secondary nucleation, although further work is necessary to conform this. The length of the surfactant hydrocarbon chain was found to affect crystal habit development.

Keywords

Solubility Nucleation Crystal growth Surfactant 

Notes

Acknowledgements

The authors are grateful to the National Science Foundation (NSFC. 21106110, 21536009), Natural Science Foundation of Shaanxi Province, People's Republic of China (2013JQ2020) for their financial assistance in this project.

References

  1. 1.
    Ottens M, Lebreton B, Zomerdijk M, Bruinsma OSL, van der Wielen LAM. Impurity effects on the crystallization kinetics of ampicillin. Ind Eng Chem Res. 2004;43:7932–8.CrossRefGoogle Scholar
  2. 2.
    Klapwijk AR, Simone E, Nagy ZK, Wilson CC. Tuning crystal morphology of succinic acid using a polymer additive. Cryst Growth Des. 2016;16:4349–59.CrossRefGoogle Scholar
  3. 3.
    van der Leeden MC, Kashchiev D, van Rosmalen GM. Effect of additives on nucleation rate, crystal growth rate and induction time in precipitation. J Cryst Growth. 1993;130:221–32.CrossRefGoogle Scholar
  4. 4.
    Davey RJ. The role of additives in precipitation processes. In: Jancic SJ, de Jong EJ (eds) industrial crystallization 81; North-Holland: Amsterdam, The Netherlands. 1982, 123.Google Scholar
  5. 5.
    Titiz-Sargut S, Ulrich J. Influence of additives on the width of the metastable zone. Cryst Growth Des. 2002;2:371–4.CrossRefGoogle Scholar
  6. 6.
    Mahmoud MHH, Rashad MM, Ibrahim IA, Abdel-Aal EA. Crystal modification of calcium sulfate dihydrate in the presence of some surface-active agents. J Colloid Interface Sci. 2004;270:99–105.CrossRefGoogle Scholar
  7. 7.
    Somnath SK, Herman JM, Joop HH. Combination of a single primary nucleation event and secondary nucleation in crystallization processes. Cryst Growth Des. 2011;11:1271–7.CrossRefGoogle Scholar
  8. 8.
    Cui YQ, Myerson AS. Experimental evaluation of contact secondary nucleation mechanisms. Cryst Growth Des. 2014;14:5152–7.CrossRefGoogle Scholar
  9. 9.
    Jang SM, Myerson AS. A comparison of binding energy, metastable zone width, and nucleation induction time of succinic acid with various additives. In: Myerson AS; Meenan Green DA, editors. Crystal growth of organic materials. American Chemical Society: Washington, D C. 1996, 53–8.Google Scholar
  10. 10.
    Ronald CZ, Ronald WR. The influence of surfactants on the crystallization of l-isoleucine. Ind Eng Chem Res. 1989;28:334–40.CrossRefGoogle Scholar
  11. 11.
    Vasanth KK, Rocha F. On the effect of a non-Ionic surfactant on the surface of sucrose crystals and on the crystal growth process by inverse gas chromatography. J Chromatogr A. 2009;1216:8528–34.CrossRefGoogle Scholar
  12. 12.
    Velev OD, Pan YH, Kaler EW, Lenhoff AM. Molecular effects of anionic surfactants on lysozyme precipitation and crystallization. Cryst Growth Des. 2005;5:351–9.CrossRefGoogle Scholar
  13. 13.
    Ryan CS, Michael FD. Faceted crystal shape evolution during dissolution or growth. AIChE J. 2007;53:1337–48.CrossRefGoogle Scholar
  14. 14.
    Yang HY, Rasmuson Åke C. Ternary phase diagrams of ethyl paraben and propyl paraben in ethanol aqueous solvents. Fluid Phase Equilib. 2014;376:69–75.CrossRefGoogle Scholar
  15. 15.
    Yu QY, Ma XY, Gao WY. Determination of the solubility, dissolution enthalpy and entropy of suberic acid in different solvents. Fluid Phase Equilib. 2012;330:44–7.CrossRefGoogle Scholar
  16. 16.
    Yang HY. Relation between metastable zone width and induction time of butyl paraben in ethanol. CrystEngComm. 2015;17:577–86.CrossRefGoogle Scholar
  17. 17.
    Sangwal K. Developments in understanding of the metastable zone width of different solute solvent systems. J Cryst Growth. 2011;318:103–9.CrossRefGoogle Scholar
  18. 18.
    Hou J, Wu S, Li R, Dong W, Gong J. The induction time, interfacial energy and growth mechanism of maltitol in batch cooling crystallization. Cryst Res Technol. 2012;47:888–95.Google Scholar
  19. 19.
    Sangwal K, Brzoska EM. Effect of impurities on metastable zone width for the growth of ammonium oxalate monohydrate crystals from aqueous solutions. J Cryst Growth. 2004;267:662–75.CrossRefGoogle Scholar
  20. 20.
    Song WL, Li A, Xi XQ. Water solubility enhancement of phthalates by cetyltrimethylammonium bromide and b-cyclodextrin. Ind Eng Chem Data. 2003;42:949–55.Google Scholar
  21. 21.
    Kubota N. A new interpretation of metastable zone widths measured for unseeded solutions. J Cryst Growth. 2008;310:629–34.CrossRefGoogle Scholar
  22. 22.
    Myerson AS. Handbook of industrial crystallization. 2nd ed. Woburn: Butterworth-Heinemann; 2002.Google Scholar
  23. 23.
    Nagy ZK, Fujiwara M, Woo XY, Braatz RD. Determination of the kinetic parameters for the crystallization of paracetamol from water using metastable zone width experiments. Ind Eng Chem Res. 2008;47:1245–52.CrossRefGoogle Scholar
  24. 24.
    Yu QS, Dang LP, Black S, Wei HY. Crystallization of the polymorphs of succinic acid via sublimation at different temperatures in the presence or absence of water and isopropanol vapor. J Cryst Growth. 2012;340:209–15.CrossRefGoogle Scholar
  25. 25.
    Dawson DM, Pritchard AM. Proceedings of 22nd AICHE/ASME National, Heat Transfer Conference, Niagara Falls, NY, 1984, 19.Google Scholar
  26. 26.
    Parveen S, Davey RJ, Dent G, Pritchard RG. Linking solution chemistry to crystal nucleation: the case of tetrolic acid. Chem Commun. 2005;12:1531–3.CrossRefGoogle Scholar
  27. 27.
    Erdemir D, Chattopadhyay S, Guo L, Ilavsky J, Amenitsch H, Segre CU, Myerson AS. Relationship between self-association of glycine molecules in supersaturated solutions and solid state outcome. Phys Rev Lett. 2007;99:115702.CrossRefGoogle Scholar
  28. 28.
    Hamad S, Hughes CE, Catlow CRA, Harris KDM. Clustering of glycine molecules in aqueous solution studied by molecular dynamics simulation. J Phys Chem B. 2008;112:7280–8.CrossRefGoogle Scholar
  29. 29.
    Chiarella RA, Gillon AL, Burton RC, Davey RJ, Sadiq G, Auffret A, Cioffi M, Hunter CA. The nucleation of inosine: the impact of solution chemistry on the appearance of polymorphic and hydrated crystal forms. Faraday Discuss. 2007;136:179–93.CrossRefGoogle Scholar
  30. 30.
    Chattopadhyay S, Erdemir D, Evans JMB, Ilavsky J, Amenitsch H, Segre CU, Myerson AS. SAXS study of the nucleation of glycine crystals from a supersaturated solution. Cryst Growth Des. 2005;5:523–7.CrossRefGoogle Scholar
  31. 31.
    Meldrum FC, Sear RP. Now you see them. Science. 2008;322:1802–3.CrossRefGoogle Scholar
  32. 32.
    Vekilov PG. Metastable mesoscopic phases in concentrated protein solutions. Ann NY Acad Sci. 2009;1161:377–86.CrossRefGoogle Scholar
  33. 33.
    Lutsko JF, Nicolis G. Theoretical evidence for a dense fluid precursor to crystallization. Phys Rev Lett. 2006;96:046102.CrossRefGoogle Scholar
  34. 34.
    Gliko O, Pan W, Katsonis P, Neumaier N, Galkin O, Weinkauf S, Vekilov PG. Metastable liquid clusters in super- and undersaturated protein solutions. J Phys Chem B. 2007;111:3106–14.CrossRefGoogle Scholar
  35. 35.
    Wolde PRT, Frenkel D. Enhancement of protein crystal nucleation by critical density fluctuations. Science. 1997;277:1975–8.CrossRefGoogle Scholar
  36. 36.
    Xu AW, Ma Y, Colfen H. Biomimetic mineralization. J Mater Chem. 2007;17:415–49.CrossRefGoogle Scholar
  37. 37.
    Bonnett PE, Carpenter KJ, Dawson S, Davey RJ. Solution crystallisation via a submerged liquid-liquid phase boundary: oiling out. Chem Commun. 2003;6:698–9.CrossRefGoogle Scholar
  38. 38.
    Stephens CJ, Kim YY, Evans SD, Meldrum FC, Christenson HK. Early stages of crystallization of calcium carbonate revealed in picoliter droplets. J Am Chem Soc. 2011;133:5210–3.CrossRefGoogle Scholar
  39. 39.
    Anna JB, Jan S, Moore BD. 250 nm glycine-rich nanodroplets are formed on dissolution of glycine crystals but are too small to provide productive nucleation sites. Cryst Growth Des. 2013;13:470–8.CrossRefGoogle Scholar
  40. 40.
    Somnath SK, Samir AK, Roger CR, Andrzej I, Joop HH, Herman JMK. A new view on the metastable zone width during cooling crystallization. Chem Eng Sci. 2012;72:10–9.CrossRefGoogle Scholar

Copyright information

© AOCS 2017

Authors and Affiliations

  • Qiushuo Yu
    • 1
    • 2
    • 3
    Email author
  • Xiaorui Li
    • 1
  • Xiaoyan Qiao
    • 1
  • Min Qi
    • 1
  1. 1.School of Chemical EngineeringNorthwest UniversityXi’anPeople’s Republic of China
  2. 2.Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei EnergyXi’anPeople’s Republic of China
  3. 3.Shaanxi Research Center of Engineering Technology for Clean Coal ConversionXi’anPeople’s Republic of China

Personalised recommendations