Skip to main content
Log in

The Nucleation and Growth of Succinic Acid in the Presence of Surfactants

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Impurities may have a marked effect on crystal nucleation and growth. To further understand the role of impurities, the crystallization (solubility, nucleation, growth) of succinic acid in water in the presence of surfactants such as polyethylene glycol sorbitan monooleate (Tween 80), cetyltrimethylammonium bromide (CTAB) and sodium dodecylbenzenesulfonate (SDBS) was investigated experimentally. The presence of CTAB, SDBS or Tween 80 had little influence on succinic acid solubility but did slow crystallization kinetics. The surfactant monomer in solution, not micelles, proved to play the primary role affecting nucleation. The nucleation inhibition by surfactant was analyzed on the base of a two-step nucleation process: (1) the inhibition on the formation and growth of succinic acid nanodroplets and (2) the influence on succinic acid single nucleus (SASN) in secondary nucleation. SASN may play important role in secondary nucleation, although further work is necessary to conform this. The length of the surfactant hydrocarbon chain was found to affect crystal habit development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ottens M, Lebreton B, Zomerdijk M, Bruinsma OSL, van der Wielen LAM. Impurity effects on the crystallization kinetics of ampicillin. Ind Eng Chem Res. 2004;43:7932–8.

    Article  CAS  Google Scholar 

  2. Klapwijk AR, Simone E, Nagy ZK, Wilson CC. Tuning crystal morphology of succinic acid using a polymer additive. Cryst Growth Des. 2016;16:4349–59.

    Article  CAS  Google Scholar 

  3. van der Leeden MC, Kashchiev D, van Rosmalen GM. Effect of additives on nucleation rate, crystal growth rate and induction time in precipitation. J Cryst Growth. 1993;130:221–32.

    Article  Google Scholar 

  4. Davey RJ. The role of additives in precipitation processes. In: Jancic SJ, de Jong EJ (eds) industrial crystallization 81; North-Holland: Amsterdam, The Netherlands. 1982, 123.

  5. Titiz-Sargut S, Ulrich J. Influence of additives on the width of the metastable zone. Cryst Growth Des. 2002;2:371–4.

    Article  CAS  Google Scholar 

  6. Mahmoud MHH, Rashad MM, Ibrahim IA, Abdel-Aal EA. Crystal modification of calcium sulfate dihydrate in the presence of some surface-active agents. J Colloid Interface Sci. 2004;270:99–105.

    Article  CAS  Google Scholar 

  7. Somnath SK, Herman JM, Joop HH. Combination of a single primary nucleation event and secondary nucleation in crystallization processes. Cryst Growth Des. 2011;11:1271–7.

    Article  Google Scholar 

  8. Cui YQ, Myerson AS. Experimental evaluation of contact secondary nucleation mechanisms. Cryst Growth Des. 2014;14:5152–7.

    Article  CAS  Google Scholar 

  9. Jang SM, Myerson AS. A comparison of binding energy, metastable zone width, and nucleation induction time of succinic acid with various additives. In: Myerson AS; Meenan Green DA, editors. Crystal growth of organic materials. American Chemical Society: Washington, D C. 1996, 53–8.

  10. Ronald CZ, Ronald WR. The influence of surfactants on the crystallization of l-isoleucine. Ind Eng Chem Res. 1989;28:334–40.

    Article  Google Scholar 

  11. Vasanth KK, Rocha F. On the effect of a non-Ionic surfactant on the surface of sucrose crystals and on the crystal growth process by inverse gas chromatography. J Chromatogr A. 2009;1216:8528–34.

    Article  Google Scholar 

  12. Velev OD, Pan YH, Kaler EW, Lenhoff AM. Molecular effects of anionic surfactants on lysozyme precipitation and crystallization. Cryst Growth Des. 2005;5:351–9.

    Article  CAS  Google Scholar 

  13. Ryan CS, Michael FD. Faceted crystal shape evolution during dissolution or growth. AIChE J. 2007;53:1337–48.

    Article  Google Scholar 

  14. Yang HY, Rasmuson Åke C. Ternary phase diagrams of ethyl paraben and propyl paraben in ethanol aqueous solvents. Fluid Phase Equilib. 2014;376:69–75.

    Article  CAS  Google Scholar 

  15. Yu QY, Ma XY, Gao WY. Determination of the solubility, dissolution enthalpy and entropy of suberic acid in different solvents. Fluid Phase Equilib. 2012;330:44–7.

    Article  CAS  Google Scholar 

  16. Yang HY. Relation between metastable zone width and induction time of butyl paraben in ethanol. CrystEngComm. 2015;17:577–86.

    Article  CAS  Google Scholar 

  17. Sangwal K. Developments in understanding of the metastable zone width of different solute solvent systems. J Cryst Growth. 2011;318:103–9.

    Article  CAS  Google Scholar 

  18. Hou J, Wu S, Li R, Dong W, Gong J. The induction time, interfacial energy and growth mechanism of maltitol in batch cooling crystallization. Cryst Res Technol. 2012;47:888–95.

    CAS  Google Scholar 

  19. Sangwal K, Brzoska EM. Effect of impurities on metastable zone width for the growth of ammonium oxalate monohydrate crystals from aqueous solutions. J Cryst Growth. 2004;267:662–75.

    Article  CAS  Google Scholar 

  20. Song WL, Li A, Xi XQ. Water solubility enhancement of phthalates by cetyltrimethylammonium bromide and b-cyclodextrin. Ind Eng Chem Data. 2003;42:949–55.

    CAS  Google Scholar 

  21. Kubota N. A new interpretation of metastable zone widths measured for unseeded solutions. J Cryst Growth. 2008;310:629–34.

    Article  CAS  Google Scholar 

  22. Myerson AS. Handbook of industrial crystallization. 2nd ed. Woburn: Butterworth-Heinemann; 2002.

    Google Scholar 

  23. Nagy ZK, Fujiwara M, Woo XY, Braatz RD. Determination of the kinetic parameters for the crystallization of paracetamol from water using metastable zone width experiments. Ind Eng Chem Res. 2008;47:1245–52.

    Article  CAS  Google Scholar 

  24. Yu QS, Dang LP, Black S, Wei HY. Crystallization of the polymorphs of succinic acid via sublimation at different temperatures in the presence or absence of water and isopropanol vapor. J Cryst Growth. 2012;340:209–15.

    Article  CAS  Google Scholar 

  25. Dawson DM, Pritchard AM. Proceedings of 22nd AICHE/ASME National, Heat Transfer Conference, Niagara Falls, NY, 1984, 19.

  26. Parveen S, Davey RJ, Dent G, Pritchard RG. Linking solution chemistry to crystal nucleation: the case of tetrolic acid. Chem Commun. 2005;12:1531–3.

    Article  Google Scholar 

  27. Erdemir D, Chattopadhyay S, Guo L, Ilavsky J, Amenitsch H, Segre CU, Myerson AS. Relationship between self-association of glycine molecules in supersaturated solutions and solid state outcome. Phys Rev Lett. 2007;99:115702.

    Article  Google Scholar 

  28. Hamad S, Hughes CE, Catlow CRA, Harris KDM. Clustering of glycine molecules in aqueous solution studied by molecular dynamics simulation. J Phys Chem B. 2008;112:7280–8.

    Article  CAS  Google Scholar 

  29. Chiarella RA, Gillon AL, Burton RC, Davey RJ, Sadiq G, Auffret A, Cioffi M, Hunter CA. The nucleation of inosine: the impact of solution chemistry on the appearance of polymorphic and hydrated crystal forms. Faraday Discuss. 2007;136:179–93.

    Article  CAS  Google Scholar 

  30. Chattopadhyay S, Erdemir D, Evans JMB, Ilavsky J, Amenitsch H, Segre CU, Myerson AS. SAXS study of the nucleation of glycine crystals from a supersaturated solution. Cryst Growth Des. 2005;5:523–7.

    Article  CAS  Google Scholar 

  31. Meldrum FC, Sear RP. Now you see them. Science. 2008;322:1802–3.

    Article  CAS  Google Scholar 

  32. Vekilov PG. Metastable mesoscopic phases in concentrated protein solutions. Ann NY Acad Sci. 2009;1161:377–86.

    Article  CAS  Google Scholar 

  33. Lutsko JF, Nicolis G. Theoretical evidence for a dense fluid precursor to crystallization. Phys Rev Lett. 2006;96:046102.

    Article  Google Scholar 

  34. Gliko O, Pan W, Katsonis P, Neumaier N, Galkin O, Weinkauf S, Vekilov PG. Metastable liquid clusters in super- and undersaturated protein solutions. J Phys Chem B. 2007;111:3106–14.

    Article  CAS  Google Scholar 

  35. Wolde PRT, Frenkel D. Enhancement of protein crystal nucleation by critical density fluctuations. Science. 1997;277:1975–8.

    Article  Google Scholar 

  36. Xu AW, Ma Y, Colfen H. Biomimetic mineralization. J Mater Chem. 2007;17:415–49.

    Article  CAS  Google Scholar 

  37. Bonnett PE, Carpenter KJ, Dawson S, Davey RJ. Solution crystallisation via a submerged liquid-liquid phase boundary: oiling out. Chem Commun. 2003;6:698–9.

    Article  Google Scholar 

  38. Stephens CJ, Kim YY, Evans SD, Meldrum FC, Christenson HK. Early stages of crystallization of calcium carbonate revealed in picoliter droplets. J Am Chem Soc. 2011;133:5210–3.

    Article  CAS  Google Scholar 

  39. Anna JB, Jan S, Moore BD. 250 nm glycine-rich nanodroplets are formed on dissolution of glycine crystals but are too small to provide productive nucleation sites. Cryst Growth Des. 2013;13:470–8.

    Article  Google Scholar 

  40. Somnath SK, Samir AK, Roger CR, Andrzej I, Joop HH, Herman JMK. A new view on the metastable zone width during cooling crystallization. Chem Eng Sci. 2012;72:10–9.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Science Foundation (NSFC. 21106110, 21536009), Natural Science Foundation of Shaanxi Province, People's Republic of China (2013JQ2020) for their financial assistance in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiushuo Yu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Li, X., Qiao, X. et al. The Nucleation and Growth of Succinic Acid in the Presence of Surfactants. J Surfact Deterg 20, 1351–1358 (2017). https://doi.org/10.1007/s11743-017-1999-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-017-1999-8

Keywords

Navigation