Advertisement

Journal of Surfactants and Detergents

, Volume 20, Issue 6, pp 1311–1320 | Cite as

Solubilization of Ni Imidazole Complex in Micellar Media of Anionic Surfactants, Sodium Dodecyl Sulfate and Sodium Stearate

  • Nafisa Younas
  • Muhammad Abid RashidEmail author
  • Muhammad Usman
  • Sadia NazirEmail author
  • Sadia Noor
  • Abdul Basit
  • Muhammad Jamil
Original Article

Abstract

The solubilization and physicochemical behavior of a coordination complex of nickel, namely [Ni(im)6]F2·5H2O [hexakis(imidazole)nickel(II) fluoride pentahydrate], in aqueous micellar media of anionic surfactants, i.e., sodium dodecyl sulfate (SDS) and sodium stearate (SS), were investigated by using UV–Vis spectroscopy and electrical conductivity measurements. Spectroscopic techniques were used for the computation of binding constant (K b), partition coefficient (K x), change in free energy of binding (ΔG b), and change in free energy of partition (ΔG p), whereas electrical conductivity data was helpful to calculate thermodynamic parameters of micellization of surfactants in the presence of the Ni complex, i.e., standard entropy of micellization (ΔS m), free energy (ΔG m), and enthalpy of micellization (ΔH m). It is evident from the results that solubilization of the Ni complex takes place because of electrostatic as well as hydrophobic interactions. The presence of the Ni complex in micellar media increases the critical micelle concentration of both surfactants owing to the structure-breaking effect.

Keywords

Surfactant Solubilization UV–Vis spectroscopy Micelles Partition coefficient 

Notes

Acknowledgements

Financial support from the Higher Education Commission (HEC) Pakistan is gratefully acknowledged. (HEC scholarship No. 213-53340-2PS2-042 for S. Noor, Grant No. SRGP 1499 and NRPU 4923 for M. A. Rashid).

References

  1. 1.
    Tehrani-Bagha AR, Singh R, Holmberg K. Solubilization of two organic dyes by anionic, cationic and nonionic surfactants. Colloid Surface A. 2013;417:133–9.CrossRefGoogle Scholar
  2. 2.
    Reynolds W, Peat I, Freedman M, Lyerla J. Determination of the tautomeric form of the imidazole ring of l-histidine in basic solution by carbon-13 magnetic resonance spectroscopy. J Am Chem Soc. 1973;95:328–31.CrossRefGoogle Scholar
  3. 3.
    Kumaraguru N, Santhakumar K, Arunachalam S, Arumugham M. Synthesis, characterization and micellization behaviour of some surface active mixed-ligand complexes of cobalt(III). Polyhedron. 2006;25:3253–60.CrossRefGoogle Scholar
  4. 4.
    Şahin N, Moll HE, Sémeril D, Matt D, Özdemir İ, Kaya C, Toupet L. Synthesis and use of trans-dichlorido-tetrakis-(N-R-imidazole)nickel(II) complexes in Kumada–Tamao–Corriu cross-coupling reactions. Polyhedron. 2011;30:2051–4.CrossRefGoogle Scholar
  5. 5.
    Song JF, Zhou RS, Xu XY, Liu YB, Wang TG, Xu JQ. Syntheses, crystal structures and properties of two new coordination complexes containing 1,2,4,5-benzene tetracarboxylate and imidazole: [Ni2(Him)12·(bta)·8H2O] and [Cd2(Him)4(μ4-bta)]. J Mol Struct. 2008;874:34–40.CrossRefGoogle Scholar
  6. 6.
    Qiu LG, Xie AJ, Shen YH. Hydrolysis of p-nitrophenyl picolinate catalyzed by metal complexes of N-alkyl-3,5-bis(hydroxymethyl)-1,2,4-triazole in CTAB micelles. J Colloid Interf Sci. 2005;290:475–80.CrossRefGoogle Scholar
  7. 7.
    Rodríguez-Argüelles MC, Lopez-Silva EC, Sanmartín J, Bacchi A, Pelizzi C, Zani F. Hydrolysis of p-nitrophenyl picolinate catalyzed by metal complexes of N-alkyl-3,5-bis (hydroxymethyl)-1,2,4-triazole in CTAB micelles. Inorg Chim Acta. 2004;357:2543–52.CrossRefGoogle Scholar
  8. 8.
    Greiner BA, Marshall NM, Sarjeant AAN, McLauchlan CC. Imidazole-based nickel(II) and cobalt(II) coordination complexes for potential use as models for histidine containing metalloproteins. Inorg Chim Acta. 2007;360:3132–40.CrossRefGoogle Scholar
  9. 9.
    Zawartka W, Gniewek A, Trzeciak AM. Palladium complexes with chiral imidazole ligands as potential catalysts for asymmetric C-C coupling reactions. Inorg Chim Acta. 2016. doi: 10.1016/j.ica.2016.05.021.Google Scholar
  10. 10.
    Demir S, Yazıcılar TK, Taş M. Two novel analogous Ni(II) and Cd(II) complexes of an imidazole based Schiff base obtained from imidazole-4-carbaldehyde and 2-aminophenol. Inorg Chim Acta. 2014;409:399–406.CrossRefGoogle Scholar
  11. 11.
    Kuchtanin V, Kleščíková L, Šoral M, Fischer R, Růžičková Z, Rakovský E, Moncoľ J, Segľa P. Nickel(II) Schiff base complexes: synthesis, characterization and catalytic activity in Kumada–Corriu cross-coupling reactions. Polyhedron. 2016;117:90.CrossRefGoogle Scholar
  12. 12.
    Dixon NE, Blakeley RL, Zerner B. Jack bean urease (EC 3.5. 1.5). III. The involvement of active-site nickel ion in inhibition by β-mercaptoethanol, phosphoramidate, and fluoride. Can J Biochem Cell B. 1980;58:481–8.Google Scholar
  13. 13.
    Arif M, Nazir S, Iqbal M, Anjum S. Synthesis and characterization of transition metal fluoride complexes with imidazole: X-ray crystal structure reveals short hydrogen bonds between lattice water and lattice fluoride. Inorg Chim Acta. 2009;362:1624–8.CrossRefGoogle Scholar
  14. 14.
    Usman M, Rashid MA, Mansha A, Siddiq M. Thermodynamic solution properties of pefloxacin mesylate and its interactions with organized assemblies of anionic surfactant, sodium dodecyl sulphate. Thermochim Acta. 2013;573:18–24.CrossRefGoogle Scholar
  15. 15.
    Mahmood K, Shakeel M, Siddiq M, Usman M. Thermodynamic solution properties of benzalkonium chloride in aqueous and ethanolic media and its interactions with organized assemblies of anionic surfactant sodium dodecyl sulphate and amino acids. Tenside Surfact Det. 2016;53:195–204.CrossRefGoogle Scholar
  16. 16.
    Naeem K, Shah SS, Shah SW, Laghari GM. Solubilization of cationic hemicyanine dyesin anionic surfactant micelles: a partitioning study. Monatsh Chem. 2000;131:761–7.CrossRefGoogle Scholar
  17. 17.
    Naeem K, Shah SW, Naseem B, Shah SS. Interactions of short chain phenylalkanoic acids within ionic surfactant micelles in aqueous media. Serbian Chem Soc J. 2012;77:201–10.CrossRefGoogle Scholar
  18. 18.
    Shah SS, Naeem K, Shah S, Hussain H. Solubilization of short chain phenylalkanoic acids by a cationic surfactant, cetyltrimethyl ammonium bromide. Colloid Surface A. 1999;148:299–304.CrossRefGoogle Scholar
  19. 19.
    Usman M, Siddiq M. Surface and micellar properties of chloroquine diphosphate and its interactions with surfactants and human serum albumin. J Chem Thermodyn. 2013;58:359–66.CrossRefGoogle Scholar
  20. 20.
    Hanif S, Usman M, Huain A, Rasool N, Zubair M, Rana UA. Solubilization of benzothiazole (BNZ) by micellar media of sodium dodecyl sulphate and cetyl trimethylammonium bromide. J Mol Liq. 2015;211:7–14.CrossRefGoogle Scholar
  21. 21.
    Haq NU, Usman M, Mansha A, Rashid MA, Munir M, Rana UA. Solubilization of reactive blue 19 by the micelles of cationic surfactant cetyltrimethyl ammonium bromide (CTAB). J Mol Liq. 2014;196:264–9.CrossRefGoogle Scholar
  22. 22.
    Kawamura H, Manabe M, Miyamoto Y, Fujita Y, Tokunaga S. Partition coefficients of homologous ω-phenylalkanols between water and sodium dodecyl sulfate micelles. J Phys Chem. 1989;93:5536–40.CrossRefGoogle Scholar
  23. 23.
    Rosen MJ, Kunjappu JT. Surfactants and interfacial phenomena. 4th ed. New jersey: Wiley; 2012.CrossRefGoogle Scholar
  24. 24.
    Mehta S, Bhasin K, Kumar A, Dham S. Micellar behavior of dodecyldimethylethyl ammonium bromide and dodecyltrimethyl ammonium chloride in aqueous media in the presence of diclofenac sodium. Colloid Surf A. 2006;278:17–25.CrossRefGoogle Scholar
  25. 25.
    Usman M, Khan A, Siddiq M. Thermodynamic properties of amphiphilic antidepressant drug citalopram HBr. J Chem Soc Pak. 2010;32:1–6.Google Scholar
  26. 26.
    Akhtar F, Hoque MA, Khan MA. Interaction of cefadroxyl monohydrate with hexadecyltrimethyl ammonium bromide and sodium dodecyl sulfate. J Chem Thermodyn. 2008;40:1082–6.CrossRefGoogle Scholar
  27. 27.
    Irfan M, Usman M, Mansha A, Rasool N, Ibrahim M, Rana UA, Siddiq M, Zia-Ul-Haq M, Jaafar HZ, Khan SUD. Thermodynamic and spectroscopic investigation of interactions between reactive red 223 and reactive orange 122 anionic dyes and cetyl trimethyl ammonium bromide (CTAB) cationic surfactant in aqueous solution. Sci World J. 2014;2014:1–8.CrossRefGoogle Scholar
  28. 28.
    Shah A, Khan AM, Usman M, Qureshi R, Siddiq M, Shah SS. Thermodynamic characterization of dexamethasone sodium phosphate and its complex with DNA as studied by conductometric and spectroscopic techniques. J Chil Chem Soc. 2009;54:134–7.CrossRefGoogle Scholar

Copyright information

© AOCS 2017

Authors and Affiliations

  • Nafisa Younas
    • 1
  • Muhammad Abid Rashid
    • 1
    Email author
  • Muhammad Usman
    • 2
  • Sadia Nazir
    • 3
    Email author
  • Sadia Noor
    • 1
  • Abdul Basit
    • 1
  • Muhammad Jamil
    • 4
  1. 1.Department of ChemistryUniversity of AgricultureFaisalabadPakistan
  2. 2.Department of ChemistryGovernment College UniversityFaisalabadPakistan
  3. 3.Department of ChemistryGovt. College Women UniversityFaisalabadPakistan
  4. 4.Department of ChemistryGovt. Postgraduate CollegeSahiwalPakistan

Personalised recommendations