Skip to main content
Log in

Biosafety Evaluation of Three Sodium Lauryl N-Amino Acids Synthesized from Silk Industrial Waste in Mice

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

In this study, three amino acid mixtures recovered from silk industry waste were reacted with lauryl chloride to synthesize three sodium laurel N-amino acid surfactants. The three types of anionic surfactants are referred to as silk fibroin surfactant, silk sericin surfactant, and silkworm pupae surfactant. All three surfactants showed good surface properties. To evaluate biological safety, we added these three surfactants to the normal diet of mice for 8 weeks. Blood indices, blood lipid, antioxidant capacity (GSH-PX, MDA, T-AOC, and T-SOD), and lipid metabolism key enzyme mRNA (PPAR-γ, SREBP, FASN, and C/EBP-α) levels in the liver were measured. No evident histopathological changes were found in the liver and kidney. The results showed no significant difference in their indexes between the surfactant-fed and normal diet-fed mice. Thus, the three amino acid surfactants are biologically safe and can be used in daily chemical cleaning products. These surfactants will not only help to reduce wastage of resources and damage to the environment, but also yield economic benefits to the silk industry in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Baschang G, Hanmann A, Wacker O. Lipopeptides having antitumor activity. US4666886A, 1987-05-19.

  2. Carl PL. Process for making acyl aminde of amino acid salts. US78118858A, 1958-12-18.

  3. Nagao A, Kito M. Synthesis of O-acyl-l-homoserine by lipase. J Am Oil Chem Soc. 1989;66(5):710–3.

    Article  CAS  Google Scholar 

  4. Li Z-Y, Qian C. Enzymatic synthesis of surfactant. Ind Microorg. 2001;31(2):45–6.

    CAS  Google Scholar 

  5. Rao V, Jauregi P, Gill I, et al. Chemo-enzymatic synthesis of amino acid-based surfactants. J Oil Fat Ind. 1997;74(7):879–86.

    Google Scholar 

  6. Hattori T, Kitamura N. Amidation method for preparing N-long-chain-acyl neutal amino acid surfactants. EP1314717, 2003-05-28.

  7. Yamamoto G. Surfactant. JP2000144173A2, 2000-05-26.

  8. Siddiq AM, Parandhaman T, Begam AF, Das SK, Alam MS. Effect of gemini surfactant (16-6-16) on the synthesis of silver nanoparticles: a facile approach for antibacterial application. Enzym Microb Technol. 2016;95:118–27 (in press).

    Article  CAS  Google Scholar 

  9. Deyab MA. Application of nonionic surfactant as a corrosion inhibitor for zinc in alkaline battery solution. J Power Sources. 2015;292:66–71.

    Article  CAS  Google Scholar 

  10. Baliarsingh S, Jena J, Das T, Das N. Role of cationic and anionic surfactants in textile dyeing with natural dyes extracted from waste plant materials and their potential antimicrobial properties. Ind Crops Prod. 2013;50:618–24.

    Article  CAS  Google Scholar 

  11. Gaubert A, Clement Y, Bonhomme A, Burger B, Bouveresse DJR, Rutledge D, Casabianca H, Lanteri P, Bordes C. Characterization of surfactant complex mixtures using Raman spectroscopy and signal extraction methods: application to laundry detergent deformulation. Anal Chim Acta. 2016;915:36–48.

    Article  CAS  Google Scholar 

  12. Howe AM, Clarke A, Mitchell J, Staniland J, Hawkes L, Whalan C. Visualising surfactant enhanced oil recovery. Colloids Surf A. 2015;480:449–61.

    Article  CAS  Google Scholar 

  13. Pal N, Babu K, Mandal A. Surface tension, dynamic light scattering and rheological studies of a new polymeric surfactant for application in enhanced oil recovery. J Pet Sci Eng. 2016;146:591–600.

    Article  CAS  Google Scholar 

  14. Raffa P, Broekhuis AA, Picchioni F. Polymeric surfactants for enhanced oil recovery: a review. J Pet Sci Eng. 2016;145:723–33.

    Article  CAS  Google Scholar 

  15. Zhang Y, You Q, Fu Y, et al. Investigation on interfacial/surface properties of bio-based surfactant N-aliphatic amide-N,N-diethoxypropylsulfonate sodium as an oil displacement agent regenerated from waste cooking oil. J Mol Liq. 2016;223:68–74.

    Article  CAS  Google Scholar 

  16. Wu MH, Zhang YQ. Nanofiltration recovery of sericin from silk processing waste and synthesis of a lauroyl sericin-based surfactant and its characteristics. RSC Adv. 2014;4(8):4140–5.

    Article  CAS  Google Scholar 

  17. Wu M-H, Wan L-Z, Zhang Y-Q. A novel sodium N-fatty acyl amino acid surfactant using silkworm pupae as stock material. Sci Rep. 2014;4(4428):1–8.

    CAS  Google Scholar 

  18. Huang LT, Yeh TF, Kuo YL, et al. Effect of surfactant and budesonide on the pulmonary distribution of fluorescent dye in mice. Pediatr Neonatol. 2014;56(1):19–24.

    Article  Google Scholar 

  19. Fitch RM. Principles of colloid and surface chemistry, by Paul C. Hiemenz, Marcel Dekker, New York, 1977, pp. 516. No Price given. J Polym Sci Part C Polym Lett. 1984;22(9):508–509.

  20. Xia J, Qian JA, Nnanna IA. Synthesis and surface properties of amino acid surfactants from industrial waste proteins. J Agric Food Chem. 1996;44(4):975–9.

    Article  CAS  Google Scholar 

  21. Ferguson LB, Most D, Blednov YA, et al. PPAR agonists regulate brain gene expression: relationship to their effects on ethanol consumption. Neuropharmacology. 2014;86(1):397–407.

    Article  CAS  Google Scholar 

  22. Zhang D, Wang G, Han D, et al. Activation of PPAR-γ ameliorates pulmonary arterial hypertension via inducing heme oxygenase-1 and p21 WAF1: an in vivo study in rats. Life Sci. 2014;98(1):39–43.

    Article  CAS  Google Scholar 

  23. Stoeckman AK, Towle HC. The role of SREBP-1c nutritional regulation of lipogenic enzyme gene expression. J Biol Chem. 2002;277(30):27029–35.

    Article  CAS  Google Scholar 

  24. Rosolen D, Kretzer IF, Winter E, et al. N-Phenylmaleimides affect adipogenesis and present antitumor activity through reduction of FASN expression. Chem Biol Interact. 2016;258:10–20.

    Article  CAS  Google Scholar 

  25. Haile AB, Zhang W, Wang W, et al. Fatty acid synthase (FASN) gene polymorphism and early lactation milk fat composition in Xinong Saanen goats. Small Rumin Res. 2016;138:1–11.

    Article  Google Scholar 

  26. Sayeed SK, Zhao J, Sathyanarayana BK, et al. C/EBPβ (CEBPB) protein binding to the C/EBP|CRE DNA 8-mer TTGC|GTCA is inhibited by 5hmC and enhanced by 5mC, 5fC, and 5caC in the CG dinucleotide. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms. 2015;1849(6):583–9.

    Article  Google Scholar 

  27. Wang X, Huang G, Shuang M, et al. Over-expression of C/EBP-α induces apoptosis in cultured rat hepatic stellate cells depending on p53 and peroxisome proliferator-activated receptor-γ. Biochem Biophys Res Commun. 2009;380(2):286–91.

    Article  CAS  Google Scholar 

  28. Oshika M, Naito S. Acylated silk proteins for hair care: U.S. Patent 5,747,015. 1998-5-5.

  29. Chen L-L. Synthesis and properties of amino acid surfactant with silk fibroin as raw material. Master’s degree thesis of Soochow University. 2009,05,18.

  30. Wei ZJ, et al. Optimization of supercritical carbon dioxide extraction of silkworm pupal oil applying the response surface methodology. Bioresour Technol. 2009;100(18):4214–9.

    Article  CAS  Google Scholar 

  31. Zhou Jun, Han D. Safety evaluation of protein of silkworm (Antheraea pernyi) pupae. Food Chem Toxicol. 2006;44(7):1123–30.

    Article  CAS  Google Scholar 

  32. Deori M, et al. Antioxidant and antigenotoxic effects of pupae of the muga silkworm Antheraea assamensis. Food Biosci. 2013;5:108–14.

    Article  Google Scholar 

  33. Montet D, Servat F, Pina M, Graille J, Galzy P, Arnaud A, Marcou L. Enzymatic synthesis of N-ε-acyllysines. J Am Oil Chem Soc. 1990;67(11):771–4.

    Article  CAS  Google Scholar 

  34. Soo EL, et al. Optimization of the enzyme-catalyzed synthesis of amino acid-based surfactants from palm oil fractions. J Biosci Bioeng. 2003;95(4):361–7.

    Article  CAS  Google Scholar 

  35. Bidhe RM, Ghosh S. Acute and subchronic (28-day) oral toxicity study in rats fed with novel surfactants. AAPS J. 2004;6(2):7–16.

    Article  Google Scholar 

  36. Kaneko I, et al. A 13-week subchronic oral toxicity study of l-serine in rats. Food Chem Toxicol. 2009;47(9):2356–60.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the earmarked fund (CARS-22-ZJ0504) for China Agriculture Research System (CARS) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Qing Zhang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, B., Wan, LZ. & Zhang, YQ. Biosafety Evaluation of Three Sodium Lauryl N-Amino Acids Synthesized from Silk Industrial Waste in Mice. J Surfact Deterg 20, 1173–1187 (2017). https://doi.org/10.1007/s11743-017-1995-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-017-1995-z

Keywords

Navigation