Journal of Surfactants and Detergents

, Volume 20, Issue 5, pp 1095–1104 | Cite as

Experimental Study of Nanofluids Applied in EOR Processes

  • Tereza Neuma de Castro DantasEmail author
  • Tamyris Thaise Costa de Souza
  • Afonso Avelino Dantas Neto
  • Maria Carlenise Paiva de Alencar Moura
  • Eduardo Lins de Barros Neto
Original Article


Nanoemulsions are small droplet-sized systems that have low surface tension and a small percentage of active material in their composition. In this study, low oil content nanoemulsion systems were developed for the use in enhanced oil recovery (EOR). The experiments were performed on a device capable of simulating petroleum reservoir conditions using sandstone rock cores. Nanoemulsions were obtained from a pre-selected microemulsion system composed of: RNX95 as surfactant, isopropyl alcohol as cosurfactant, kerosene as oil phase, and distilled water as aqueous phase. Different percentages of polyacrylamide were added to the systems obtained to evaluate the influence of viscosity in EOR results. The nanoemulsion droplet sizes ranged from 9.22 to 14.8 nm. Surface tension values were in the range of 33.6–39.7  dyn/cm. A nanoemulsion system with 2.5 wt% surfactant was used in EOR assays. The oil recovery was directly proportional to polymer percentage in the nanoemulsion, ranging from 39.6 to 76.8%. The total oil in the place recovery ranged from 74.5 to 90%.


Surfactant applications Non-ionic surfactants Interfacial science Surface activity 


  1. 1.
    Kamal MS. A review of gemini surfactants: potential application in enhanced oil recovery. J Surfactants Deterg. 2016;19:223–36. doi: 10.1007/s11743-015-1776-5.CrossRefGoogle Scholar
  2. 2.
    Bera A, Ojha K, Mandal A. Synergistic effect of mixed surfactant systems on foam behavior and surface tension. J Surfactants Deterg. 2013;16:621–30. doi: 10.1007/s11743-012-1422-4.CrossRefGoogle Scholar
  3. 3.
    Kamal MS, Hussain SMS, Sultan AS. Development of novel amidosulfobetaine surfactant-polymer systems for EOR applications. J Surfactants Deterg. 2016;19:989–97. doi: 10.1007/s11743-016-1848-1.CrossRefGoogle Scholar
  4. 4.
    Chen L, Zhang G, Ge J, et al. Research of the heavy oil displacement mechanism by using alkaline/surfactant flooding system. Colloids Surf A. 2013;434:63–71. doi: 10.1016/j.colsurfa.2013.05.035.CrossRefGoogle Scholar
  5. 5.
    Jeirani Z, Mohamed Jan B, Si Ali B, et al. Formulation, optimization and application of triglyceride microemulsion in enhanced oil recovery. Ind Crops Prod. 2013;43:6–14.CrossRefGoogle Scholar
  6. 6.
    Santanna VC, Curbelo FDS, Castro Dantas TN, et al. Microemulsion flooding for enhanced oil recovery. J Petrol Sci Eng. 2009;66:117–20. doi: 10.1016/j.petrol.2009.01.009.CrossRefGoogle Scholar
  7. 7.
    Myers D. Surfactant science and technology, 3rd ed. New York: Wiley; 2005. doi: 10.1002/047174607X.
  8. 8.
    Sadurní N, Solans C, Azemar N, García-Celma MJ. Studies on the formation of O/W nanoemulsions, by low-energy emulsification methods, suitable for pharmaceutical applications. Eur J Pharm Sci. 2005;26:438–45. doi: 10.1016/j.ejps.2005.08.001.CrossRefGoogle Scholar
  9. 9.
    Pathak M. Nanoemulsions and their stability for enhancing functional properties of food ingredients. In: Grumezescu A, editor. Nanotechnology applications in food. New York: Elsevier; 2017. p. 87–106.CrossRefGoogle Scholar
  10. 10.
    Ee SL, Duan X, Liew J, Nguyen QD. Droplet size and stability of nano-emulsions produced by the temperature phase inversion method. Chem Eng J. 2008;140:626–31. doi: 10.1016/j.cej.2007.12.016.CrossRefGoogle Scholar
  11. 11.
    Floury J, Desrumaux A, Axelos MA, Legrand J. Effect of high pressure homogenisation on methylcellulose as food emulsifier. J Food Eng. 2003;58:227–38. doi: 10.1016/S0260-8774(02)00372-2.CrossRefGoogle Scholar
  12. 12.
    Klang V, Matsko NB, Valenta C, Hofer F. Electron microscopy of nanoemulsions: an essential tool for characterisation and stability assessment. Micron. 2012;43:85–103. doi: 10.1016/j.micron.2011.07.014.CrossRefGoogle Scholar
  13. 13.
    Landfester K, Eisenblätter J, Rothe R. Preparation of polymerizable miniemulsions by ultrasonication. J Coat Technol Res. 2004;1:65–8. doi: 10.1007/s11998-004-0026-y.CrossRefGoogle Scholar
  14. 14.
    Mittal KL, Shah DO. Adsorption and aggregation of surfactants in solution, vol. 109. Surfactant Science SeriesBoca Raton: CRC Press; 2003. doi: 10.1201/9780203910573.Google Scholar
  15. 15.
    Mountain GA, Jelier BJ, Bagia C, Frieson CM, Janjic JM. Design and formulation of nanoemulsions using 2-(poly(hexafluoropropylene oxide)) perfluoropropyl benzene in combination with linear perfluoro(polyethylene glycol dimethyl ether). J Fluorine Chem. 2014;162:38–44. doi: 10.1016/j.jfluchem.2014.03.007.CrossRefGoogle Scholar
  16. 16.
    Solans C, Izquierdo P, Nolla J, et al. Nano-emulsions. Curr Opin Colloid Interface Sci. 2005;10:102–10. doi: 10.1016/j.cocis.2005.06.004.CrossRefGoogle Scholar
  17. 17.
    Tadros T, Izquierdo P, Esquena J, Solans C. Formation and stability of nano-emulsions. Adv Coll Interface Sci. 2004;108–109:303–18. doi: 10.1016/j.cis.2003.10.023.CrossRefGoogle Scholar
  18. 18.
    Anton N, Benoit JP, Saulnier P. Design and production of nanoparticles formulated from nanoemulsion templates—a review. J Control Release. 2008;128:185–99. doi: 10.1016/j.jconrel.2008.02.007.CrossRefGoogle Scholar
  19. 19.
    Chilingarian GV, Donaldson EC, Yen TF. Preface. Dev Pet Sci 1985;17:vii–viii. doi: 10.1016/S0376-7361(08)70561-2.
  20. 20.
    Rebinder PA. Use of surfactant in the petroleum industry. Berlin: Kluwer Academic Publishers; 1965.Google Scholar
  21. 21.
    Wang Z, Le X, Feng Y, Zhang C. The role of matching relationship between polymer injection parameters and reservoirs in enhanced oil recovery. J Petrol Sci Eng. 2013;111:139–43. doi: 10.1016/j.petrol.2013.07.011.CrossRefGoogle Scholar
  22. 22.
    Pei H, Zhang G, Ge J, et al. Effect of polymer on the interaction of alkali with heavy oil and its use in improving oil recovery. Colloids Surf A. 2014;446:57–64. doi: 10.1016/j.colsurfa.2014.01.031.CrossRefGoogle Scholar
  23. 23.
    El-Batanoney M, Abdel-Moghny T, Ramzi M. The effect of mixed surfactants on enhancing oil recovery. J Surfactants Deterg. 1999;2:201–5. doi: 10.1007/s11743-999-0074-7.CrossRefGoogle Scholar
  24. 24.
    Hadji M, Al-Rubkhi A, Al-Maamari RS, Aoudia M. Surfactant (in situ)–surfactant (synthetic) interaction in Na2CO3/surfactant/acidic oil systems for enhanced oil recovery: its contribution to dynamic interfacial tension behavior. J Surfactants Deterg. 2015;18:761–71. doi: 10.1007/s11743-015-1714-6.CrossRefGoogle Scholar
  25. 25.
    Bera A, Kumar T, Ojha K, Mandal A. Screening of microemulsion properties for application in enhanced oil recovery. Fuel. 2014;121:198–207. doi: 10.1016/j.fuel.2013.12.051.CrossRefGoogle Scholar
  26. 26.
    Castro Dantas TN, Soares APJ, Wanderley Neto AO, et al. Implementing new microemulsion systems in wettability inversion and oil recovery from carbonate reservoirs. Energy Fuels. 2014;28:6749–59. doi: 10.1021/ef501697x.CrossRefGoogle Scholar
  27. 27.
    Zhu P, Zhu Y, Xu Z, et al. Effect of polymer on dynamic interfacial tensions of anionic–nonionic surfactant solutions. J Dispers Sci Technol. 2016;37:820–9. doi: 10.1080/01932691.2015.1065502.CrossRefGoogle Scholar
  28. 28.
    Nandwani SK, Malek NI, Lad VN, et al. Study on interfacial properties of Imidazolium ionic liquids as surfactant and their application in enhanced oil recovery. Colloids Surf A. 2017;516:383–93. doi: 10.1016/j.colsurfa.2016.12.037.CrossRefGoogle Scholar
  29. 29.
    Aoudia M, Al-Shibli MN, Al-Kasimi LH, et al. Novel surfactants for ultralow interfacial tension in a wide range of surfactant concentration and temperature. J Surfactants Deterg. 2006;9:287–93. doi: 10.1007/s11743-006-5009-9.CrossRefGoogle Scholar
  30. 30.
    Hosseini-nasab SM, Zitha PLJ, Mirhaj SA, Simjoo M. A new chemical-enhanced oil recovery method? Colloids Surf A. 2016;507:89–95.CrossRefGoogle Scholar
  31. 31.
    Ahmadi M-A, Ahmad Z, Phung LTK, et al. Experimental investigation the effect of nanoparticles on micellization behavior of a surfactant: application to EOR. Petrol Sci Technol. 2016;34:1055–61. doi: 10.1080/10916466.2016.1148051.CrossRefGoogle Scholar
  32. 32.
    Sveistrup M, van Mastrigt F, Norrman J, et al. Viability of biopolymers for enhanced oil recovery. J Dispers Sci Technol. 2016;37:1160–9. doi: 10.1080/01932691.2015.1088450.CrossRefGoogle Scholar
  33. 33.
    Li K, Jing X, He S, et al. Laboratory study displacement efficiency of viscoelastic surfactant solution in enhanced oil recovery. Energy Fuels. 2016;30:4467–74. doi: 10.1021/acs.energyfuels.5b02925.CrossRefGoogle Scholar
  34. 34.
    Malik IA, Al-Mubaiyedh UA, Sultan AS, et al. Rheological and thermal properties of novel surfactant-polymer systems for EOR applications. Can J Chem Eng. 2016;94:1693–9. doi: 10.1002/cjce.22541.CrossRefGoogle Scholar
  35. 35.
    Mahdavi SZ, Aalaie J, Miri T, et al. Study of polyacrylamide-surfactant system on the water–oil interface properties and rheological properties for EOR. Arab J Chem. 2016. doi: 10.1016/j.arabjc.2016.05.006.Google Scholar
  36. 36.
    Hou B, Wang Y, Cao X, et al. Mechanisms of enhanced oil recovery by surfactant-induced wettability alteration. J Dispers Sci Technol. 2016;37:1259–67. doi: 10.1080/01932691.2015.1089778.CrossRefGoogle Scholar
  37. 37.
    Sulaiman WRW, Lee ES. Simulation of surfactant based enhanced oil recovery. Open Petrol Eng J. 2012. doi: 10.2174/1874834101205010078.Google Scholar
  38. 38.
    Zhou X, Dong M, Maini B. The dominant mechanism of enhanced heavy oil recovery by chemical flooding in a two-dimensional physical model. Fuel. 2013;108:261–8. doi: 10.1016/j.fuel.2013.02.012.CrossRefGoogle Scholar
  39. 39.
    Hendraningrat L, Li S, Torsæter O. A coreflood investigation of nanofluid enhanced oil recovery. J Petrol Sci Eng. 2013;111:128–38. doi: 10.1016/j.petrol.2013.07.003.CrossRefGoogle Scholar
  40. 40.
    Daghlian Sofla SJ, Sharifi M, Sarapardeh AH. Toward mechanistic understanding of natural surfactant flooding in enhanced oil recovery processes: the role of salinity, surfactant concentration and rock type. J Mol Liq. 2016;222:632–9. doi: 10.1016/j.molliq.2016.07.086.CrossRefGoogle Scholar
  41. 41.
    Shafiee Najafi SA, Kamranfar P, Madani M, et al. Experimental and theoretical investigation of CTAB microemulsion viscosity in the chemical enhanced oil recovery process. J Mol Liq. 2017;232:382–9. doi: 10.1016/j.molliq.2017.02.092.CrossRefGoogle Scholar
  42. 42.
    Sharma T, Sangwai JS. Silica nanofluids in polyacrylamide with and without surfactant: viscosity, surface tension, and interfacial tension with liquid paraffin. J Petrol Sci Eng. 2017. doi: 10.1016/j.petrol.2017.01.039.Google Scholar
  43. 43.
    Oxiteno. Boletim técnico Ultranex® NP. 2014.Google Scholar
  44. 44.
    Griffin WC. Classification of surface-active agents by “HLB”. J Soc Cosmet Chem. 1949;1:311–26.Google Scholar
  45. 45.
    Dantas TNC, Neto AAD, Teixeira ERF, et al. Influence of polymer addition in a microemulsion system and its application in enhanced oil recovery. In: Intenational solvent extraction conference. 2011.Google Scholar
  46. 46.
    Vonnegut B. Rotating bubble method for the determination of surface and interfacial tensions. Rev Sci Instrum. 1942;13:6–9. doi: 10.1063/1.1769937.CrossRefGoogle Scholar
  47. 47.
    Barradas TN, de Campos VEB, Senna JP, et al. Development and characterization of promising o/w nanoemulsions containing sweet fennel essential oil and non-ionic sufactants. Colloids Surf A. 2014;480:214–21. doi: 10.1016/j.colsurfa.2014.12.001.CrossRefGoogle Scholar
  48. 48.
    Biruss B, Dietl R, Valenta C. The influence of selected steroid hormones on the physicochemical behaviour of DPPC liposomes. Chem Phys Lipids. 2007;148:84–90. doi: 10.1016/j.chemphyslip.2007.04.009.CrossRefGoogle Scholar
  49. 49.
    Muggeridge A, Cockin A, Webb K, et al. Recovery rates, enhanced oil recovery and technological limits. Philos Trans R Soc Lond A. 2013. doi: 10.1098/rsta.2012.0320.Google Scholar
  50. 50.
    Langevin D. Micelles and microemulsions. In: Garrido L, editor. Complex Fluids: proceedings of the xii sitges conference sitges, Barcelona, Spain, 1–5 June 1992. Berlin: Springer; 1993. p. 327–49.CrossRefGoogle Scholar
  51. 51.
    Ahmadi MA, Arabsahebi Y, Shadizadeh SR, Shokrollahzadeh Behbahani S. Preliminary evaluation of mulberry leaf-derived surfactant on interfacial tension in an oil-aqueous system: EOR application. Fuel. 2014;117:749–55. doi: 10.1016/j.fuel.2013.08.081.CrossRefGoogle Scholar
  52. 52.
    Babadagli T, Al-Bemani A, Boukadi F, Al-Maamari R. A laboratory feasibility study of dilute surfactant injection for the Yibal field, Oman. J Petrol Sci Eng. 2005;48:37–52. doi: 10.1016/j.petrol.2005.04.005.CrossRefGoogle Scholar
  53. 53.
    Babadagli T. Evaluation of the critical parameters in oil recovery from fractured chalks by surfactant injection. J Petrol Sci Eng. 2006;54:43–54. doi: 10.1016/j.petrol.2006.07.006.CrossRefGoogle Scholar
  54. 54.
    Bera A, Ojha K, Mandal A, Kumar T. Interfacial tension and phase behavior of surfactant-brine-oil system. Colloids Surf A. 2011;383:114–9. doi: 10.1016/j.colsurfa.2011.03.035.CrossRefGoogle Scholar
  55. 55.
    Xu J, Zhang Y, Chen H, et al. Effect of surfactant headgroups on the oil/water interface: an interfacial tension measurement and simulation study. J Mol Struct. 2013;1052:50–6. doi: 10.1016/j.molstruc.2013.07.049.CrossRefGoogle Scholar

Copyright information

© AOCS 2017

Authors and Affiliations

  • Tereza Neuma de Castro Dantas
    • 1
    Email author
  • Tamyris Thaise Costa de Souza
    • 1
  • Afonso Avelino Dantas Neto
    • 1
  • Maria Carlenise Paiva de Alencar Moura
    • 1
    • 2
  • Eduardo Lins de Barros Neto
    • 1
  1. 1.Department of Chemical EngineeringFederal University of Rio Grande do NorteNatalBrazil
  2. 2.Post-Graduate Program in Petroleum and Gas EngineeringPotiguar UniversityNatalBrazil

Personalised recommendations