Skip to main content
Log in

Synthesis and Surface Properties of Novel Carboxylic Ester-Containing Imidazolium-Based Zwitterionic Surfactants: Monoalkyl 2-(3-Methylimidazolium-1-yl) Succinate Inner Salts

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

A series of carboxylic ester-containing imidazolium-based zwitterionic surfactants, namely, monoalkyl 2-(3-methylimidazolium-1-yl) succinate inner salts (CnMimSU, n = 8, 10, 12 and 14), have been synthesized. Their structures were confirmed by 1H NMR, 13C NMR and FTIR. The typical physicochemical properties parameters such as isoelectric point, critical micelle concentration (CMC), surface tension at CMC (γ CMC), surface pressure at CMC (ΠCMC), adsorption efficiency (pC 20), the maximum surface excess (Γ m), the minimum molecular cross-sectional area (A min) and the value of CMC/C 20 were determined. The effect of the long-chain length on the important physicochemical properties of CnMimSU was studied. It is found that the surface activity of CnMimSU is enhanced with the long-chain length increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tondo DW, Leopoldino EC, Souza BS, Micke GA, Costa AC, Fiedler HD, Bunton CA, Nome F. Synthesis of a new zwitterionic surfactant containing an imidazolium ring. Evaluating the chameleon-like behavior of zwitterionic micelles. Langmuir. 2010;26:15754–60.

    Article  CAS  Google Scholar 

  2. Liu XF, Dong LL, Fang Y. A novel zwitterionic imidazolium-based ionic liquid surfactant: 1-carboxymethyl-3-dodecylimidazolium inner salt. J Surfact Deterg. 2011;14:497–504.

    Article  CAS  Google Scholar 

  3. Ni BQ, Hu J, Liu XF, Chen H, Fang Y. Effect of long-chain length on the surface activities of zwitterionic imidazolium-based surfactants: 1-arboxymethyl-3- alkylimidazolium inner salts. J Surfact Deterg. 2012;15:729–34.

    Article  CAS  Google Scholar 

  4. Lin JCY, Huang CJ, Lee YT, Lee KM, Lin IJB. Carboxylic acid functionalized imidazolium salts: sequential formation of ionic, zwitterionic, acid-zwitterionic and lithium salt-zwitterionic liquid crystals. J Mater Chem. 2011;21:8110–21.

    Article  CAS  Google Scholar 

  5. Seredyuk V, Alami E, Nyden M, Holmberg K. Micellization and adsorption properties of novel zwitterionic surfactants. Langmuir. 2001;17:5160–5.

    Article  CAS  Google Scholar 

  6. Zhu JX, Qing YH, Wang T, Zhu RL, Wei JM, Tao Q, Yuan P, He HP. Preparation and characterization of zwitterionic surfactant-modified montmorillonites. J Colloid Interf Sci. 2011;360:386–92.

    Article  CAS  Google Scholar 

  7. Qu GM, Cheng JC, Wei JJ, Yu T, Ding W, Luan HX. Synthesis, characterization and surface properties of series sulfobetaine surfactants. J Surfact Deterg. 2011;14:31–5.

    Article  CAS  Google Scholar 

  8. Yoshimura T, Ichinokawa T, Kaji M, Esumi K. Synthesis and surface-active properties of sulfobetaine-type zwitterionic gemini surfactants. Colloid Surf A. 2006;273:208–12.

    Article  CAS  Google Scholar 

  9. Matsuno R, Takami K, Ishihara K. Simple synthesis of a library of zwitterionic surfactants via Michael-type addition of methacrylate and alkane thiol compounds. Langmuir. 2010;26:13028–32.

    Article  CAS  Google Scholar 

  10. Ren CC, Wang F, Zhang ZQ, Nie HH, Li N, Cui M. Synthesis, surface activity and aggregation behavior of gemini imidazolium surfactants 1,3-bis(3-alkylimidazolium-1-yl) propane bromide. Colloid Surf A. 2015;467:1–8.

    Article  CAS  Google Scholar 

  11. Kamboj R, Singh S, Bhadani A, Kataria H, Kaur J. Gemini imidazolium surfactants: synthesis and their biophysiochemical study. Langmuir. 2012;28:11969–78.

    Article  CAS  Google Scholar 

  12. Liu HQ, Shi GY, Xu BC, Chen SY, Zhang GJ. Synthesis, characterization and properties of N-alkyl-N, N-di(2-hydroxyethyl) amine oxides. J Surfact Deterg. 2017;20:129–36.

    Article  CAS  Google Scholar 

  13. Bougueroua M, Mousli R, Tazerouti A. Synthesis and physicochemical properties of alanine-based surfactants. J Surfact Deterg. 2016;19:1121–31.

    Article  CAS  Google Scholar 

  14. Li JY, Yang PF, Sha ZL, Li TD, Liu YM. Synthesis and micellization of organosilicon gemini quaternary ammonium surfactants. J Surfact Deterg. 2015;18:155–61.

    Article  CAS  Google Scholar 

  15. Patial P, Shaheen A, Ahmad I. Synthesis, characterization and evaluation of the surface active properties of novel cationic imidazolium gemini surfactants. J Surfact Deterg. 2014;17:253–60.

    Article  CAS  Google Scholar 

  16. Wang LY, Qin HL, Ding LM, Huo SC, Deng QG, Zhao B, Meng LW, Yan T. Preparation of a novel class of cationic gemini imidazolium surfactants containing amide groups as the spacer: their surface properties and antimicrobial activity. J Surfact Deterg. 2014;17:1099–106.

    Article  CAS  Google Scholar 

  17. Zhang R, Somasundaran P. Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Adv Colloid Interfac. 2006;123:213–29.

    Article  Google Scholar 

  18. Swarup S, Schoff CK. A survey of surfactants in coatings technology. Prog Org Coat. 1993;23:1–22.

    Article  CAS  Google Scholar 

  19. Yu YX, Jin Z, Bayly AE. Development of surfactants and builders in detergent formulations. Chin J Chem Eng. 2008;16:517–27.

    Article  CAS  Google Scholar 

  20. Souza FD, Souza BS, Tondo DW, Leopoldino EC, Fiedler HD, Nome F. Imidazolium-based zwitterionic surfactants: characterization of normal and reverse micelles and stabilization of nanoparticles. Langmuir. 2015;31:3587–95.

    Article  CAS  Google Scholar 

  21. Tehrani-Bagha A, Holmberg K. Cleavable surfactants. Curr Opin Colloid In. 2007;12:81–91.

    Article  CAS  Google Scholar 

  22. Hoque J, Kumar P, Aswal VK, Haldar J. Aggregation properties of amide bearing cleavable gemini surfactants by small angle neutron scattering and conductivity studies. J Phys Chem B. 2012;116:9718–26.

    Article  CAS  Google Scholar 

  23. Stjerndahl M, Holmberg K. Synthesis, stability, and biodegradability studies of a surface-active amide. J Surfact Deterg. 2005;8:331–6.

    Article  CAS  Google Scholar 

  24. Tehrani-Bagha AR, Oskarsson H, Van Ginkel CG, Holmberg K. Cationic ester-containing gemini surfactants: chemical hydrolysis and biodegradation. J Colloid Interf Sci. 2007;312:444–52.

    Article  CAS  Google Scholar 

  25. Tehrani-Bagha AR, Holmberg K. Cationic ester-containing gemini surfactants: physical–chemical properties. Langmuir. 2010;26:9276–82.

    Article  CAS  Google Scholar 

  26. Nong LP, Xiao CL, Zhong ZS. Physicochemical properties of novel phosphobetaine zwitterionic surfactants and mixed systems with an anionic surfactant. J Surfact Deterg. 2011;14:433–8.

    Article  CAS  Google Scholar 

  27. Chen XW, Song HB, Chen P, Wang FR, Qian Y, Li XH. Studying of the basicity of ionic liquids by potentiometric titration. Acta Chim Sinica. 2012;70:770–4.

    Article  CAS  Google Scholar 

  28. Mohamed A, Trickett K, Chin SY, Cummings S, Sagisaka M, Hudson L, Nave S, Dyer R, Rogers SE, Heenan RK. Universal surfactant for water, oils, and CO2. Langmuir. 2010;26:13861–6.

    Article  CAS  Google Scholar 

  29. Zhang Q, Gao ZN, Xu F, Tai SX, Liu XG, Mo SB, Niu F. Surface tension and aggregation properties of novel cationic gemini surfactants with diethylammonium headgroups and a diamido spacer. Langmuir. 2012;28:11979–87.

    Article  CAS  Google Scholar 

  30. Kamboj R, Singh S, Chauhan V. Synthesis, characterization and surface properties of N-(2-hydroxyalkyl)-N′-(2-hydroxyethyl) imidazolium surfactants. Colloid Surf A. 2014;441:233–41.

    Article  CAS  Google Scholar 

  31. Seredyuk V, Alami E, Nydén M, Holmberg K, Peresypkin AV, Menger FM. Micellization and adsorption properties of novel zwitterionic surfactants. Langmuir. 2001;17:5160–5.

    Article  CAS  Google Scholar 

  32. Rosen MJ. Surfactants and interfacial phenomena. 2nd ed. New York: Wiley; 1989. p. 39–55.

    Google Scholar 

  33. Zhao YR, Yue X, Wang XD, Huang DD, Chen X. Micelle formation by N-alkyl-N-methylpiperidinium bromide ionic liquids in aqueous solution. Colloid Surf A. 2012;412:90–5.

    Article  CAS  Google Scholar 

  34. Jungnickel C, Luczak J, Ranke J, Fernandez JF, Muller A, Thoming J. Micelle formation of imidazolium ionic liquids in aqueous solution. Colloid Surf A. 2008;316:278–84.

    Article  CAS  Google Scholar 

  35. EI Seoud OA, Pires PAR, Abdel-Moghny T, Bastos EL. Synthesis and micellar properties of surface-active ionic liquids: 1-alkyl-3-methylimidazolium chlorides. J Colloid Interf Sci. 2007;313:296–304.

  36. Blesic M, Lopes A, Melo E, Petrovski Z, Plechkova NV, Lopes JNC, Seddon KR, Rebelo LPN. On the self-aggregation and fluorescence quenching aptitude of surfactant ionic liquids. J Phys Chem B. 2008;112:8645–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the Scientific Research Project of Hunan Provincial Department of Education (16C0950).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuewei Chen.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Xin, Y., Yu, F. et al. Synthesis and Surface Properties of Novel Carboxylic Ester-Containing Imidazolium-Based Zwitterionic Surfactants: Monoalkyl 2-(3-Methylimidazolium-1-yl) Succinate Inner Salts. J Surfact Deterg 20, 1121–1127 (2017). https://doi.org/10.1007/s11743-017-1987-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-017-1987-z

Keywords

Navigation