Advertisement

Journal of Surfactants and Detergents

, Volume 20, Issue 5, pp 1121–1127 | Cite as

Synthesis and Surface Properties of Novel Carboxylic Ester-Containing Imidazolium-Based Zwitterionic Surfactants: Monoalkyl 2-(3-Methylimidazolium-1-yl) Succinate Inner Salts

  • Xuewei ChenEmail author
  • Yujuan Xin
  • Fangcai Yu
  • Zhili Lan
Original Article

Abstract

A series of carboxylic ester-containing imidazolium-based zwitterionic surfactants, namely, monoalkyl 2-(3-methylimidazolium-1-yl) succinate inner salts (CnMimSU, n = 8, 10, 12 and 14), have been synthesized. Their structures were confirmed by 1H NMR, 13C NMR and FTIR. The typical physicochemical properties parameters such as isoelectric point, critical micelle concentration (CMC), surface tension at CMC (γ CMC), surface pressure at CMC (ΠCMC), adsorption efficiency (pC 20), the maximum surface excess (Γ m), the minimum molecular cross-sectional area (A min) and the value of CMC/C 20 were determined. The effect of the long-chain length on the important physicochemical properties of CnMimSU was studied. It is found that the surface activity of CnMimSU is enhanced with the long-chain length increases.

Keywords

Zwitterionic surfactants Imidazolium Succinate inner salts 

Notes

Acknowledgements

We gratefully acknowledge the financial support of the Scientific Research Project of Hunan Provincial Department of Education (16C0950).

References

  1. 1.
    Tondo DW, Leopoldino EC, Souza BS, Micke GA, Costa AC, Fiedler HD, Bunton CA, Nome F. Synthesis of a new zwitterionic surfactant containing an imidazolium ring. Evaluating the chameleon-like behavior of zwitterionic micelles. Langmuir. 2010;26:15754–60.CrossRefGoogle Scholar
  2. 2.
    Liu XF, Dong LL, Fang Y. A novel zwitterionic imidazolium-based ionic liquid surfactant: 1-carboxymethyl-3-dodecylimidazolium inner salt. J Surfact Deterg. 2011;14:497–504.CrossRefGoogle Scholar
  3. 3.
    Ni BQ, Hu J, Liu XF, Chen H, Fang Y. Effect of long-chain length on the surface activities of zwitterionic imidazolium-based surfactants: 1-arboxymethyl-3- alkylimidazolium inner salts. J Surfact Deterg. 2012;15:729–34.CrossRefGoogle Scholar
  4. 4.
    Lin JCY, Huang CJ, Lee YT, Lee KM, Lin IJB. Carboxylic acid functionalized imidazolium salts: sequential formation of ionic, zwitterionic, acid-zwitterionic and lithium salt-zwitterionic liquid crystals. J Mater Chem. 2011;21:8110–21.CrossRefGoogle Scholar
  5. 5.
    Seredyuk V, Alami E, Nyden M, Holmberg K. Micellization and adsorption properties of novel zwitterionic surfactants. Langmuir. 2001;17:5160–5.CrossRefGoogle Scholar
  6. 6.
    Zhu JX, Qing YH, Wang T, Zhu RL, Wei JM, Tao Q, Yuan P, He HP. Preparation and characterization of zwitterionic surfactant-modified montmorillonites. J Colloid Interf Sci. 2011;360:386–92.CrossRefGoogle Scholar
  7. 7.
    Qu GM, Cheng JC, Wei JJ, Yu T, Ding W, Luan HX. Synthesis, characterization and surface properties of series sulfobetaine surfactants. J Surfact Deterg. 2011;14:31–5.CrossRefGoogle Scholar
  8. 8.
    Yoshimura T, Ichinokawa T, Kaji M, Esumi K. Synthesis and surface-active properties of sulfobetaine-type zwitterionic gemini surfactants. Colloid Surf A. 2006;273:208–12.CrossRefGoogle Scholar
  9. 9.
    Matsuno R, Takami K, Ishihara K. Simple synthesis of a library of zwitterionic surfactants via Michael-type addition of methacrylate and alkane thiol compounds. Langmuir. 2010;26:13028–32.CrossRefGoogle Scholar
  10. 10.
    Ren CC, Wang F, Zhang ZQ, Nie HH, Li N, Cui M. Synthesis, surface activity and aggregation behavior of gemini imidazolium surfactants 1,3-bis(3-alkylimidazolium-1-yl) propane bromide. Colloid Surf A. 2015;467:1–8.CrossRefGoogle Scholar
  11. 11.
    Kamboj R, Singh S, Bhadani A, Kataria H, Kaur J. Gemini imidazolium surfactants: synthesis and their biophysiochemical study. Langmuir. 2012;28:11969–78.CrossRefGoogle Scholar
  12. 12.
    Liu HQ, Shi GY, Xu BC, Chen SY, Zhang GJ. Synthesis, characterization and properties of N-alkyl-N, N-di(2-hydroxyethyl) amine oxides. J Surfact Deterg. 2017;20:129–36.CrossRefGoogle Scholar
  13. 13.
    Bougueroua M, Mousli R, Tazerouti A. Synthesis and physicochemical properties of alanine-based surfactants. J Surfact Deterg. 2016;19:1121–31.CrossRefGoogle Scholar
  14. 14.
    Li JY, Yang PF, Sha ZL, Li TD, Liu YM. Synthesis and micellization of organosilicon gemini quaternary ammonium surfactants. J Surfact Deterg. 2015;18:155–61.CrossRefGoogle Scholar
  15. 15.
    Patial P, Shaheen A, Ahmad I. Synthesis, characterization and evaluation of the surface active properties of novel cationic imidazolium gemini surfactants. J Surfact Deterg. 2014;17:253–60.CrossRefGoogle Scholar
  16. 16.
    Wang LY, Qin HL, Ding LM, Huo SC, Deng QG, Zhao B, Meng LW, Yan T. Preparation of a novel class of cationic gemini imidazolium surfactants containing amide groups as the spacer: their surface properties and antimicrobial activity. J Surfact Deterg. 2014;17:1099–106.CrossRefGoogle Scholar
  17. 17.
    Zhang R, Somasundaran P. Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Adv Colloid Interfac. 2006;123:213–29.CrossRefGoogle Scholar
  18. 18.
    Swarup S, Schoff CK. A survey of surfactants in coatings technology. Prog Org Coat. 1993;23:1–22.CrossRefGoogle Scholar
  19. 19.
    Yu YX, Jin Z, Bayly AE. Development of surfactants and builders in detergent formulations. Chin J Chem Eng. 2008;16:517–27.CrossRefGoogle Scholar
  20. 20.
    Souza FD, Souza BS, Tondo DW, Leopoldino EC, Fiedler HD, Nome F. Imidazolium-based zwitterionic surfactants: characterization of normal and reverse micelles and stabilization of nanoparticles. Langmuir. 2015;31:3587–95.CrossRefGoogle Scholar
  21. 21.
    Tehrani-Bagha A, Holmberg K. Cleavable surfactants. Curr Opin Colloid In. 2007;12:81–91.CrossRefGoogle Scholar
  22. 22.
    Hoque J, Kumar P, Aswal VK, Haldar J. Aggregation properties of amide bearing cleavable gemini surfactants by small angle neutron scattering and conductivity studies. J Phys Chem B. 2012;116:9718–26.CrossRefGoogle Scholar
  23. 23.
    Stjerndahl M, Holmberg K. Synthesis, stability, and biodegradability studies of a surface-active amide. J Surfact Deterg. 2005;8:331–6.CrossRefGoogle Scholar
  24. 24.
    Tehrani-Bagha AR, Oskarsson H, Van Ginkel CG, Holmberg K. Cationic ester-containing gemini surfactants: chemical hydrolysis and biodegradation. J Colloid Interf Sci. 2007;312:444–52.CrossRefGoogle Scholar
  25. 25.
    Tehrani-Bagha AR, Holmberg K. Cationic ester-containing gemini surfactants: physical–chemical properties. Langmuir. 2010;26:9276–82.CrossRefGoogle Scholar
  26. 26.
    Nong LP, Xiao CL, Zhong ZS. Physicochemical properties of novel phosphobetaine zwitterionic surfactants and mixed systems with an anionic surfactant. J Surfact Deterg. 2011;14:433–8.CrossRefGoogle Scholar
  27. 27.
    Chen XW, Song HB, Chen P, Wang FR, Qian Y, Li XH. Studying of the basicity of ionic liquids by potentiometric titration. Acta Chim Sinica. 2012;70:770–4.CrossRefGoogle Scholar
  28. 28.
    Mohamed A, Trickett K, Chin SY, Cummings S, Sagisaka M, Hudson L, Nave S, Dyer R, Rogers SE, Heenan RK. Universal surfactant for water, oils, and CO2. Langmuir. 2010;26:13861–6.CrossRefGoogle Scholar
  29. 29.
    Zhang Q, Gao ZN, Xu F, Tai SX, Liu XG, Mo SB, Niu F. Surface tension and aggregation properties of novel cationic gemini surfactants with diethylammonium headgroups and a diamido spacer. Langmuir. 2012;28:11979–87.CrossRefGoogle Scholar
  30. 30.
    Kamboj R, Singh S, Chauhan V. Synthesis, characterization and surface properties of N-(2-hydroxyalkyl)-N′-(2-hydroxyethyl) imidazolium surfactants. Colloid Surf A. 2014;441:233–41.CrossRefGoogle Scholar
  31. 31.
    Seredyuk V, Alami E, Nydén M, Holmberg K, Peresypkin AV, Menger FM. Micellization and adsorption properties of novel zwitterionic surfactants. Langmuir. 2001;17:5160–5.CrossRefGoogle Scholar
  32. 32.
    Rosen MJ. Surfactants and interfacial phenomena. 2nd ed. New York: Wiley; 1989. p. 39–55.Google Scholar
  33. 33.
    Zhao YR, Yue X, Wang XD, Huang DD, Chen X. Micelle formation by N-alkyl-N-methylpiperidinium bromide ionic liquids in aqueous solution. Colloid Surf A. 2012;412:90–5.CrossRefGoogle Scholar
  34. 34.
    Jungnickel C, Luczak J, Ranke J, Fernandez JF, Muller A, Thoming J. Micelle formation of imidazolium ionic liquids in aqueous solution. Colloid Surf A. 2008;316:278–84.CrossRefGoogle Scholar
  35. 35.
    EI Seoud OA, Pires PAR, Abdel-Moghny T, Bastos EL. Synthesis and micellar properties of surface-active ionic liquids: 1-alkyl-3-methylimidazolium chlorides. J Colloid Interf Sci. 2007;313:296–304.Google Scholar
  36. 36.
    Blesic M, Lopes A, Melo E, Petrovski Z, Plechkova NV, Lopes JNC, Seddon KR, Rebelo LPN. On the self-aggregation and fluorescence quenching aptitude of surfactant ionic liquids. J Phys Chem B. 2008;112:8645–50.CrossRefGoogle Scholar

Copyright information

© AOCS 2017

Authors and Affiliations

  • Xuewei Chen
    • 1
    Email author
  • Yujuan Xin
    • 1
  • Fangcai Yu
    • 1
  • Zhili Lan
    • 1
  1. 1.National and Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional MoleculeHunan Normal UniversityChangshaPeople’s Republic of China

Personalised recommendations