Skip to main content
Log in

Reversibly pH-Switchable Anionic-Surfactant-Based Emulsions

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

To develop a convenient and reversible strategy for phase separation and re-emulsification of surfactant-based emulsions, we established a method for pH switching of emulsions formed from a pH-switchable anionic surfactant, potassium dodecyl seleninate (C12SeO2K). Upon acidification, C12SeO2K was protonated to give a precipitate of dodecyl seleninic acid (C12SeO2H); upon basification, C12SeO2H was neutralized restore C12SeO2K. The pH-switchable window of the emulsion thus obtained was a pH range of 7 to 8. Reversible changes in both interfacial tension by ~10.2 mN m−1, as well as the mechanical, steric, and/or electrical barriers formed by C12SeO2K at the interface of the oil–aqueous solution account for the fully reversible phase separation and re-emulsification of the C12SeO2K-based emulsions. A stable emulsion (i.e. the time needed to separate 1 mL of H2O from 6 mL of emulsion at 25 °C is larger than 1 h) could be cycled at least 25 times when the pH was varied between 7 and 8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sastre AM, Kumar A, Shukla JP, Singh RK. Improved techniques in liquid membrane separations: an overview. Sep Purif Rev. 1998;27:213–98.

    Article  CAS  Google Scholar 

  2. Liu Y, Jessop PG, Cunningham M, Eckert CA, Liotta CL. Switchable surfactants. Science. 2006;313:958–60.

    Article  CAS  Google Scholar 

  3. Brown P, Butts CP, Eastoe J. Stimuli-responsive surfactants. Soft Matter. 2013;9:2365–74.

    Article  CAS  Google Scholar 

  4. Jiang J, Zhu Y, Cui Z, Binks BP. Switchable Pickering emulsions stabilized by silica nanoparticles hydrophobized in situ with a switchable surfactant. Angew Chem. 2013;125:12599–602.

    Article  Google Scholar 

  5. Liu H, Wang C, Zou S, Wei Z, Tong Z. Simple, reversible emulsion system switched by pH on the basis of chitosan without any hydrophobic modification. Langmuir. 2012;28:11017–24.

    Article  CAS  Google Scholar 

  6. Takahashi Y, Fukuyasu K, Horiuchi T, Kondo Y, Stroeve P. Photoinduced demulsification of emulsions using a photoresponsive gemini surfactant. Langmuir. 2014;30:41–7.

    Article  CAS  Google Scholar 

  7. Takahashi Y, Koizumi N, Kondo Y. Active demulsification of photoresponsive emulsions using cationic-anionic surfactant mixtures. Langmuir. 2016;32:683–8.

    Article  CAS  Google Scholar 

  8. Jia K, Cheng Y, Liu X, Li X, Dong J. Thermal, light and pH triple stimulated changes in self-assembly of a novel small molecular weight amphiphile binary system. RSC Adv. 2015;5:640–2.

    Article  CAS  Google Scholar 

  9. Viricel W, Mbarek A, Leblond J. Switchable lipids: conformational change for fast pH-triggered cytoplasmic delivery. Angew Chem Int Ed. 2015;54:12743–7.

    Article  CAS  Google Scholar 

  10. Zhang Y, An P, Liu X. Bell-shaped sol-gel-sol conversions in pH-responsive worm-based nanostructured fluid. Soft Matter. 2015;11:2080–4.

    Article  CAS  Google Scholar 

  11. Lv J, Qiao W, Xiong C. Synthesis and surface properties of a pH-regulated and pH-reversible anionic gemini surfactant. Langmuir. 2014;30:8258–67.

    Article  CAS  Google Scholar 

  12. Lu H, Xue M, Wang B, Huang Z. pH-regulated surface property and pH-reversible micelle transition of a tertiary amine-based Gemini surfactant in aqueous solution. Soft Matter. 2015;11:9135–43.

    Article  CAS  Google Scholar 

  13. Yan Z, Dai C, Zhao M, Zhao G, Li Y, Wu X. pH-switchable wormlike micelle formation by N-alkyl-N-methylpyrrolidinium bromide-based cationic surfactant. Colloids Surf A. 2015;482:283–9.

    Article  CAS  Google Scholar 

  14. Zhu Y, Jiang J, Cui Z, Binks BP. Responsive aqueous foams stabilized by silica nanoparticles hydrophobised in situ with a switchable surfactant. Soft Matter. 2014;10:9739–45.

    Article  CAS  Google Scholar 

  15. Zhang Y, Zhang Y, Wang C, Liu X, Fang Y, Feng Y. CO2-responsive microemulsion: reversible switching from an apparent single phase to near-complete phase separation. Green Chem. 2016;18:392–6.

    Article  CAS  Google Scholar 

  16. Scott LM, Robert T, Harjani JR, Jessop PG. Designing the head group of CO2-triggered switchable surfactants. RSC Adv. 2012;2:4925–31.

    Article  CAS  Google Scholar 

  17. Zhang J, Han B. Supercritical or compressed CO2 as a stimulus for tuning surfactant aggregations. Acc Chem Res. 2013;46:425–33.

    Article  CAS  Google Scholar 

  18. Ceschia E, Harjani JR, Liang C, Ghoshouni Z, Andrea T, Brown RS, Jessop PG. Switchable anionic surfactants for the remediation of oil-contaminated sand by soil washing. RSC Adv. 2014;4:4638–45.

    Article  CAS  Google Scholar 

  19. Wang G, Kang Y, Tang B, Zhang X. Tuning the surface activity of Gemini amphiphile by the host-guest interaction of cucurbit[7]uril. Langmuir. 2015;31:120–4.

    Article  Google Scholar 

  20. Brown P, Bromberg L, Rial-Hermida MI, Wasbrough M, Hatton TA, Alvarez-Lorenzo C. Magnetic surfactants and polymers with gadolinium counterions for protein separations. Langmuir. 2016;32:699–705.

    Article  CAS  Google Scholar 

  21. Brown P, Bushmelev A, Butts CP, Cheng J, Eastoe J, Grillo I, Heenan RK, Schmidt AM. Magnetic control over liquid surface properties with responsive surfactants. Angew Chem Int Ed. 2013;51:2414–6.

    Article  Google Scholar 

  22. Saji T, Hoshino K, Aoyagui S. Reversible formation and disruption of micelles by control of the redox state of the head group. J Am Chem Soc. 1985;107:6865–8.

    Article  CAS  Google Scholar 

  23. Tsuchiya K, Orihara Y, Kondo Y, Yoshino N, Ohkubo T, Sakai H, Abe M. Control of viscoelasticity using redox reaction. J Am Chem Soc. 2004;126:12282–3.

    Article  CAS  Google Scholar 

  24. Fan H, Han F, Liu Z, Qin L, Li Z, Liang D, Ke F, Huang J, Fu H. Active control of surface properties and aggregation behavior in amino acid-based Gemini surfactant systems. J Colloid Interface Sci. 2008;321:227–34.

    Article  CAS  Google Scholar 

  25. Zhang Y, Kong W, Wang C, An P, Fang Y, Feng Y, Qin Z, Liu X. Switching wormlike micelles of selenium-containing surfactant using redox reaction. Soft Matter. 2015;11:7469–73.

    Article  CAS  Google Scholar 

  26. Zhang Y, Yang C, Guo S, Chen H, Liu X. Tandem triggering of wormlike micelles using CO2 and Redox. Chem Commun. 2016;52:12717–20.

    Article  CAS  Google Scholar 

  27. Zhang Y, Chen H, Liu X, Zhang Y, Fang Y, Qin Z. Effective and reversible switching of emulsions by an acid/base-mediated redox reaction. Langmuir. 2016;32:13728–35.

    Article  CAS  Google Scholar 

  28. Chu W. Remediation of contaminated soils by surfactant-aided soil washing. Pract Period Hazard Toxic Radioact Waste Manage. 2003;7:19–24.

    Article  CAS  Google Scholar 

  29. Zhang Y, An P, Liu X. A “worm”-containing viscoelastic fluid based on single amine oxide surfactant with an unsaturated C22-tail. RSC Adv. 2015;5:19135–44.

    Article  CAS  Google Scholar 

  30. Rosen MJ. Surfactants and interfacial phenomena. 3rd ed. New Jersey: Wiley; 2004. p. 122–7.

    Book  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant nos. 21673103, 21503094), the Qinglan Project of Jiangsu Province, and Zhejiang Zanyu Technology Co. Ltd., People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2533 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zhang, Y., Liu, X. et al. Reversibly pH-Switchable Anionic-Surfactant-Based Emulsions. J Surfact Deterg 20, 1115–1120 (2017). https://doi.org/10.1007/s11743-017-1981-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-017-1981-5

Keywords

Navigation