Journal of Surfactants and Detergents

, Volume 20, Issue 4, pp 881–889 | Cite as

A New Sensor for Determination of Anionic Surfactants in Detergent Products with Carbon Nanotubes as Solid Contact

  • Nikola SakačEmail author
  • Marija Jozanović
  • Maja Karnaš
  • Milan Sak-Bosnar
Original Article


A new solid-state sensor for potentiometric determination of surfactants with a layer of multi-walled carbon nanotubes was prepared. As a sensing material, 1,3-didecyl-2-methylimidazolium–tetraphenylborate ion-pair was used. The investigated sensor showed a Nernstian response for both dodecylbenzenesulphonate (DBS, 57.6 mV/decade of activity between 5 × 10−7 to 1 × 10−3 M) and sodium lauryl sulfate (LS, 58.4 mV/decade of activity between 2 × 10−7 to 2 × 10−3 M). It responded in 8–10 s for each ten-fold concentration change in the range of 1 × 10−6 to 3 × 10−3 M. The detection limits for DS and DBS were 2 × 10−7 and 3 × 10−7 M, respectively. The sensor revealed a stable response (signal drift 2.6 mV/h) and exhibited satisfactory selectivity performances for LS over most of the anions generally used in surfactant-based commercial detergents. The main application of this sensor was the end-point determination in potentiometric titrations of anionic surfactants. The (diisobutyl phenoxy ethoxy ethyl)dimethyl benzyl ammonium chloride (Hyamine), cetyltrimethylammonium bromide, hexadecylpyridinium chloride monohydrate (HDPC) and 1,3-didecyl-2-methylimidazolium chloride were tested as potential cationic titrants, and all exhibited analytically usable titration curves with well-defined equivalence points. The standard solution of HDPC was used as a cationic titrant by all potentiometric titrations. The operational life-time of the sensor described was prolonged to more than 3 months.


Surfactant sensor MWCNT Anionic surfactant Potentiometric titration Detergents 



This work has been supported by the Croatian Science Foundation under the project IP-11-2013.


  1. 1.
    Kutsch O. Ceresana Research, market study: surfactants. 2nd ed. Ceresana; 2015.Google Scholar
  2. 2.
    Research and Markets. Surfactants Market by Type (Anionic, Non-Ionic, Cationic, and Amphoteric), Substrate (Synthetic, and Bio-based), Application (Detergents, Personal Care, Textile, Elastomers & Plastics, Crop Protection, Food & Beverage) - Global Forecast to 2021, Markets and Markets; 2016.Google Scholar
  3. 3.
    Nazar MF, Mukhtar F, Chaudry S, et al. Biophysical probing of antibacterial Gemifloxacin assimilated in surfactant mediated molecular assemblies. J Mol Liq. 2014;200:361–8. doi: 10.1016/j.molliq.2014.11.007.CrossRefGoogle Scholar
  4. 4.
    International Organization for Standardization. Water quality, determination of surfactants, Part 1: determination of anionic surfactants by the methylene blue spectrometric method, ISO 7875/1. Geneva: Switzerland; 1984.Google Scholar
  5. 5.
    International Organization for Standardization Surface active agents. Detergents, determination of anionic-active matter by manual or mechanical direct two-phase titration procedure, ISO 2271. Geneva: Switzerland; 1989.Google Scholar
  6. 6.
    Mohamed GG, Ali TA, El-Shahat MF, et al. Potentiometric determination of cetylpyridinium chloride using a new type of screen-printed ion selective electrodes. Anal Chim Acta. 2010;673:79–87. doi: 10.1016/j.aca.2010.05.016.CrossRefGoogle Scholar
  7. 7.
    Sak-Bosnar M, Madunić-Čačić D, Sakač N, et al. Potentiometric sensor for polyethoxylated nonionic surfactant determination. Electrochim Acta. 2009;55:528–34. doi: 10.1016/j.electacta.2009.09.010.CrossRefGoogle Scholar
  8. 8.
    Abbas M, Mostafa GA, Homoda AM. Cetylpyridinium–iodomercurate PVC membrane ion selective electrode for the determination of cetylpyridinium cation in Ezafluor mouth wash and as a detector for some potentiometric titrations. Talanta. 2000;53:425–32. doi: 10.1016/S0039-9140(00)00496-3.CrossRefGoogle Scholar
  9. 9.
    Gerlache M, Sentürk Z, Viré JC, Kauffmann JM. Potentiometric analysis of ionic surfactants by a new type of ion-selective electrode. Anal Chim Acta. 1997;349:59–65. doi: 10.1016/S0003-2670(97)00277-8.CrossRefGoogle Scholar
  10. 10.
    Seguí MAJ, Lizondo-Sabater J, Benito A, et al. A new ion-selective electrode for anionic surfactants. Talanta. 2007;71:333–8. doi: 10.1016/j.talanta.2006.04.005.CrossRefGoogle Scholar
  11. 11.
    Alonso J, Baró J, Bartrolí J, et al. Flow-through tubular ion-selective electrodes responsive to anionic surfactants for flow-injection analysis. Anal Chim Acta. 1995;308:115–21. doi: 10.1016/0003-2670(94)00601-H.CrossRefGoogle Scholar
  12. 12.
    Abounassif MA, Hefnawy MM, Al-Robian H, Mostafa GAE. Dodecanthiol as novel sensing material for potentiometric determination of sodium dodecyl sulphate anionic surfactant. Int J Electrochem Sci. 2015;10:8668–79.Google Scholar
  13. 13.
    Kovács B, Csóka B, Nagy G, Ivaska A. All-solid-state surfactant sensing electrode using conductive polymer as internal electric contact. Anal Chim Acta. 2001;437:67–76. doi: 10.1016/S0003-2670(01)00987-4.CrossRefGoogle Scholar
  14. 14.
    Zielińska R, Mulik E, Michalska A, et al. All-solid-state planar miniature ion-selective chloride electrode. Anal Chim Acta. 2002;451:243–9. doi: 10.1016/S0003-2670(01)01407-6.CrossRefGoogle Scholar
  15. 15.
    Yin T, Qin W. Applications of nanomaterials in potentiometric sensors. Trends Anal Chem. 2013;51:79–86. doi: 10.1016/j.trac.2013.06.009.CrossRefGoogle Scholar
  16. 16.
    Zhao Q, Gan Z, Zhuang Q. Electrochemical sensors based on carbon nanotubes. Electroanalysis. 2002;14:1609–13. doi: 10.1002/elan.200290000.CrossRefGoogle Scholar
  17. 17.
    Crespo GA, Macho S, Rius FX. Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers. Anal Chem. 2008;80:1316–22.CrossRefGoogle Scholar
  18. 18.
    Yin T, Qin W. Applications of nanomaterials in potentiometric sensors. Trends Anal Chem. 2013;51:79–86. doi: 10.1016/j.trac.2013.06.009.CrossRefGoogle Scholar
  19. 19.
    Zhu J, Qin Y, Zhang Y. Preparation of all solid-state potentiometric ion sensors with polymer-CNT composites. Electrochem Commun. 2009;11:1684–7. doi: 10.1016/j.elecom.2009.06.025.CrossRefGoogle Scholar
  20. 20.
    Rius-ruiz FX, Crespo A, Bejarano-nosas D, et al. Potentiometric strip cell based on carbon nanotubes as transducer. Anal Chem. 2011;83:8810–5. doi: 10.1021/ac202070r.CrossRefGoogle Scholar
  21. 21.
    Hernández R, Riu J, Rius FX. Determination of calcium ion in sap using carbon nanotube-based ion-selective electrodes. Analyst. 2010;135:1979–85. doi: 10.1039/c0an00148a.CrossRefGoogle Scholar
  22. 22.
    Guinovart T, Parrilla M, Crespo GA, et al. Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes. Analyst. 2013;138:5208. doi: 10.1039/c3an00710c.CrossRefGoogle Scholar
  23. 23.
    Najafi M, Maleki L, Rafati AA. Novel surfactant selective electrochemical sensors based on single walled carbon nanotubes. J Mol Liq. 2011;159:226–9. doi: 10.1016/j.molliq.2011.01.013.CrossRefGoogle Scholar
  24. 24.
    Galović O, Samardžić M, Hajduković M, Sak-Bosnar M. A new graphene-based surfactant sensor for the determination of anionic surfactants in real samples. Sensors Actuators B. 2016;236:257–67. doi: 10.1016/j.snb.2016.05.166.CrossRefGoogle Scholar
  25. 25.
    Madunić Čačić D, Sak-Bosnar M, Galović O, et al. Determination of cationic surfactants in pharmaceutical disinfectants using a new sensitive potentiometric sensor. Talanta. 2008;76:259–64. doi: 10.1016/j.talanta.2008.02.023.CrossRefGoogle Scholar
  26. 26.
    Guilbault GG, Durst RA, Frant MS, Freiser H, Hansen EH, Light TS, Pungor E, Rechnitz G, Rice NM, Rohm TJ, Simon W. Recommendations for nomenclature of ion-selective electrodes. Pure Appl Chem. 1976;48:127–32.Google Scholar
  27. 27.
    Umezawa Y, Bühlmann P, Umezawa K, et al. Potentiometric selectivity coefficients of ion-selective electrodes. Part I. inorganic cations (technical report). Pure Appl Chem. 2000. doi: 10.1351/pac200072101851.Google Scholar
  28. 28.
    Kargosha K, Ahmadi SH, Mansourian M, Azad J. Simultaneous determination of one nonionic and two anionic surfactants using Fourier transform infrared spectrometry and multivariate analysis. Talanta. 2008;75:589–93. doi: 10.1016/j.talanta.2007.11.065.

Copyright information

© AOCS 2017

Authors and Affiliations

  • Nikola Sakač
    • 1
    • 2
    Email author
  • Marija Jozanović
    • 1
  • Maja Karnaš
    • 1
  • Milan Sak-Bosnar
    • 1
  1. 1.Department of ChemistryJosip Juraj Strossmayer University of OsijekOsijekCroatia
  2. 2.Faculty of Geotechnical EngineeringUniversity of ZagrebVaraždinCroatia

Personalised recommendations