Skip to main content
Log in

Probing the Molecular Orientation of Methyl Isobutyl Carbinol at the Air–Water Interface

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

The molecular orientation of a branched and short-chained methyl isobutyl carbinol (MIBC) at the air–water interface was examined by sum frequency generation vibrational spectroscopy. The weak vibrational coupling model was spectroscopically validated and employed in developing the data analysis model of this multiple terminal methyl groups-containing structure. The exceptional frothability of MIBC was explained by its molecular orientation at the interface; MIBC was found to tilt at an average angle of 39o to the surface normal, exposing its hydrophobic region to the air medium. Interestingly, this orientation scheme is similar to the hydrogen bonded OH bonds of the interfacial water molecules.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gragson DE, McCarty BM, Richmond GL. Ordering of interfacial water molecules at the charged air/water interface observed by vibrational sum frequency generation. J Am Chem Soc. 1997;119(26):6144–52.

    Article  CAS  Google Scholar 

  2. Casson BD, Bain CD. Phase transitions in mixed monolayers of cationic surfactants and dodecanol at the air/water interface. J Phys Chem B. 1999;103(22):4678–86.

    Article  CAS  Google Scholar 

  3. Casson BD, Braun R, Bain CD. Phase transitions in monolayers of medium-chain alcohols on water studied by sum-frequency spectroscopy and ellipsometry. Faraday Discuss. 1996;104:209–29.

    Article  CAS  Google Scholar 

  4. Chen XY, Wang J, Kristalyn CB, Chen Z. Real-time structural investigation of a lipid bilayer during its interaction with melittin using sum frequency generation vibrational spectroscopy. Biophys J. 2007;93(3):866–75.

    Article  CAS  Google Scholar 

  5. Harper KL, Allen HC. Competition between DPPC and SDS at the air-aqueous interface. Langmuir. 2007;23(17):8925–31.

    Article  CAS  Google Scholar 

  6. Liu J, Conboy JC. Structure of a gel phase lipid bilayer prepared by the Langmuir-Blodgett/Langmuir-Schaefer method characterized by sum-frequency vibrational spectroscopy. Langmuir. 2005;21(20):9091–7.

    Article  CAS  Google Scholar 

  7. Leja J. Surface chemistry of froth flotation. New York: Plenum Press; 1982.

    Google Scholar 

  8. Nguyen AV, Schulze HJ. Colloidal science of flotation. New York: Marcel Dekker; 2004.

    Google Scholar 

  9. Le TN, Phan CM, Nguyen AV, Ang HM. An unusual synergistic adsorption of MIBC and CTAB mixtures at the air-water interface. Miner Eng. 2012;39:255–61.

    Article  CAS  Google Scholar 

  10. Phan CM, Nakahara H, Shibata O, Moroi Y, Le TN, Ang HM. Surface potential of methyl isobutyl carbinol adsorption layer at the air/water interface. J Phys Chem B. 2012;116(3):980–6.

    Article  CAS  Google Scholar 

  11. Tan SN, Pugh RJ, Fornasiero D, Sedev R, Ralston J. Foaming of polypropylene glycols and glycol/MIBC mixtures. Miner Eng. 2005;18(2):179–88.

    Article  CAS  Google Scholar 

  12. Qu X, Wang LG, Karakashev SI, Nguyen AV. Anomalous thickness variation of the foam films stabilized by weak non-ionic surfactants. J Colloid Interface Sci. 2009;337(2):538–47.

    Article  CAS  Google Scholar 

  13. Karakashev SI, Ivanova DS, Angarska ZK, Manev ED, Tsekov R, Radoev B, et al. Comparative validation of the analytical models for the Marangoni effect on foam film drainage. Colloid Surface A. 2010;365(1–3):122–36.

    Article  CAS  Google Scholar 

  14. Karraker KA, Radke CJ. Disjoining pressures zeta potentials and surface tensions of aqueous non-ionic surfactant/electrolyte solutions: theory and comparison to experiment. Adv Colloid Interface Sci. 2002;96(1–3):231–64.

    Article  CAS  Google Scholar 

  15. Paluch M. Electrical properties of free surface of water and aqueous solutions. Adv Colloid Interface Sci. 2000;84(1–3):27–45.

    Article  CAS  Google Scholar 

  16. Perry JM, Moad AJ, Begue NJ, Wampler RD, Simpson GJ. Electronic and vibrational second-order nonlinear optical properties of protein secondary structural motifs. J Phys Chem B. 2005;109(42):20009–26.

    Article  CAS  Google Scholar 

  17. Shen YR. The principles of nonlinear optics. New York: Wiley; 1984.

    Google Scholar 

  18. Wei X, Hong S-C, Zhuang X, Goto T, Shen YR. Nonlinear optical studies of liquid crystal alignment on a rubbed polyvinyl alcohol surface. Phys Rev E. 2000;62(4):5160–72.

    Article  CAS  Google Scholar 

  19. Akamatsu N, Domen K, Hirose C. Sfg study of 2-dimensional orientation of surface methyl-groups on cadmium arachidate Langmuir-Blodgett-Films. J Phys Chem. 1993;97(39):10070–5.

    Article  CAS  Google Scholar 

  20. Hirose C, Akamatsu N, Domen K. Formulas for the analysis of surface sum-frequency generation spectrum by Ch stretching modes of methyl and methylene groups. J Chem Phys. 1992;96(2):997–1004.

    Article  CAS  Google Scholar 

  21. Watanabe N, Yamamoto H, Wada A, Domen K, Hirose C, Ohtake T, et al. Vibrational sum-frequency generation (Vsfg) spectra of N-alkyltrichlorosilanes chemisorbed on quartz plate. Spectrochim Acta A. 1994;50(8–9):1529–37.

    Article  Google Scholar 

  22. Nguyen KT, King JT, Chen Z. Orientation determination of interfacial beta-sheet structures in situ. J Phys Chem B. 2010;114(25):8291–300.

    Article  CAS  Google Scholar 

  23. Nguyen KT, Le Clair SV, Ye SJ, Chen Z. Orientation determination of protein helical secondary structures using linear and nonlinear vibrational spectroscopy. J Phys Chem B. 2009;113(36):12169–80.

    Article  CAS  Google Scholar 

  24. Nguyen KT, Le Clair SV, Ye SJ, Chen Z. Molecular interactions between magainin 2 and model membranes in situ. J Phys Chem B. 2009;113(36):12358–63.

    Article  CAS  Google Scholar 

  25. Wang J, Chen XY, Clarke ML, Chen Z. Detection of chiral sum frequency generation vibrational spectra of proteins and peptides at interfaces in situ. P Natl Acad Sci USA. 2005;102(14):4978–83.

    Article  CAS  Google Scholar 

  26. Lu X, Myers JN, Chen Z. Molecular ordering of phenyl groups at the buried polystyrene/metal interface. Langmuir. 2014;30:9418–22.

    Article  CAS  Google Scholar 

  27. Ji N, Shen YR. Sum frequency vibrational spectroscopy of leucine molecules adsorbed at air-water interface. J Chem Phys. 2004;120(15):7107–12.

    Article  CAS  Google Scholar 

  28. Wang HF, Gan W, Lu R, Rao Y, Wu BH. Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS). Int Rev Phys Chem. 2005;24(2):191–256.

    Article  Google Scholar 

  29. Yu YQ, Wang YX, Hu NY, Lin K, Zhou XG, Liu SL. Overlapping spectral features and new assignment of 2-propanol in the C–H stretching region. J Raman Spectrosc. 2014;45(3):259–65.

    Article  Google Scholar 

  30. Nguyen KT, Nguyen TD, Nguyen AV. Strong cooperative effect of oppositely charged surfactant mixtures on their adsorption and packing at the air-water interface and interfacial water structure. Langmuir. 2014;30(24):7047–51.

    Article  CAS  Google Scholar 

  31. Nguyen KT, Nguyen AV. In situ investigation of halide co-ion effects on SDS adsorption at air-water interfaces. Soft Matter. 2014;10(34):6556–63.

    Article  CAS  Google Scholar 

  32. Wang J, Chen CY, Buck SM, Chen Z. Molecular chemical structure on poly(methyl methacrylate) (PMMA) surface studied by sum frequency generation (SFG) vibrational spectroscopy. J Phys Chem B. 2001;105(48):12118–25.

    Article  CAS  Google Scholar 

  33. Zhuang X, Miranda PB, Kim D, Shen YR. Mapping molecular orientation and conformation at interfaces by surface nonlinear optics. Phys Rev B. 1999;59(19):12632–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported under Australian Research Council’s Projects funding schemes (Projects LE0989675, DP1401089 and DP150100395). KN would like to acknowledge the contribution of the Southern African Systems Analysis Centre, the National Research Foundation and the Department of Science and Technology in South Africa as well as the International Institute for Applied System Analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khoi Tan Nguyen or Anh V. Nguyen.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, K.T., Shahir, A.A. & Nguyen, A.V. Probing the Molecular Orientation of Methyl Isobutyl Carbinol at the Air–Water Interface. J Surfact Deterg 20, 969–976 (2017). https://doi.org/10.1007/s11743-017-1976-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-017-1976-2

Keywords

Navigation