Skip to main content
Log in

Novel Phospholium-Type Cationic Surfactants: Synthesis, Aggregation Properties and Antimicrobial Activity

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

A series of novel phospholium amphiphilic compounds with straight alkyl chains with different numbers of carbon atoms (12, 14, 15, 16, 17, 18) were synthesized. The quaternary phosphorus, phosphonium cation, is incorporated into a five-membered heterocyclic ring. Their physicochemical properties were investigated by measurements of surface tension, conductivity and dynamic light scattering. The critical micelle concentration (c M), the surface tension value at the c M (γ cmc), the surface area at the surface saturation per head group (A cmc), the ionization degree of micelle (α), the free energy of micellization (ΔG° mic), and hydrodynamic diameter (d h) were determined. Antimicrobial activity was tested against bacteria and yeast. The structure–activity relationship was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Devínsky F, Lacko I, Bittererová F, Mlynarčík D. Quaternary ammonium salts. 18. Preparation and relationship between structure, IR spectral characteristics, and antimicrobial activity of some new bis-quaternary isosters of 1,5-pentanediammonium dibromides. Chem Pap. 1987;41:803–14.

    Google Scholar 

  2. Yarinich LA, Burakova EA, Zakharov BA, Boldyreva EV, Babkina IN, Tikunova NV, Silnikov VN. Synthesis and structure-activity relationship of novel 1,4-diazabicyklo[2.2.2]octane derivatives as potent antimicrobial agents. Eur J Med Chem. 2015;95:563–73. doi:10.1016/j.ejmech.2015.03.033.

    Article  CAS  Google Scholar 

  3. Wang L, Qin H, Ding L, Huo S, Deng Q, Zhao B, Meng L, Yan T. Preparation of novel class of cationic imidazolium surfactants containing amide groups as the spacer: their surface properties and antimicrobial activity. J Surfact Deterg. 2014;17:1099–106. doi:10.1007/s11743-014-1614-1.

    Article  CAS  Google Scholar 

  4. Obłak E, Piecuch A, Krasowska A, Łuczyński J. Antifungal activity of gemini quaternary ammonium salts. Microbiol Res. 2013;168:630–8. doi:10.1016/j.micres.2013.06.001.

    Article  Google Scholar 

  5. Mikláš R, Miklášová N, Bukovský M, Devínsky F. Synthesis and antimicrobial properties of camphorsulfonic acid derived imidazolium salts. Acta Fac Pharm Univ Comen. 2014;61:42–8. doi:10.2478/afpuc-2014-0007.

    Google Scholar 

  6. Oľkhovik VK, Matveienko YV, Vasilevskii DA, Kalechits GV, Zheldakova RA. Synthesis, antimicrobial and antifungal activity of double quaternary ammonium salts of biphenyls. Russ J Gen Chem. 2013;83:329–35. doi:10.1134/S1070363213020163.

    Article  Google Scholar 

  7. Bahamontes-Rosa N, Robin A, Ambrosio AR, Messias-Reason I, Beitz E, Flitsch SL, Kun JFL. Monoquaternary ammonium derivatives inhibit growth of protozoan parasites. Parasitol Int. 2008;57:132–7. doi:10.1016/j.parint.2007.09.006.

    Article  CAS  Google Scholar 

  8. Lukáč M, Mrva M, Garajová M, Mojžišová G, Varinská L, Mojžiš J, Sabol M, Kubincová J, Haragová H, Ondriska F, Devínsky F. Synthesis, self-aggregation and biological properties of alkylphosphocholine and alkylphosphohomocholine derivatives of cetyltrimethylammonium bromide, cetylpyridinium bromide, benzalkonium bromide (C16) and benzethonium chloride. Eur J Med Chem. 2013;66:46–55. doi:10.1016/j.ejmech.2013.05.033.

    Article  Google Scholar 

  9. Rosen MJ. Surfactants and interfacial phenomena. New York: Wiley; 2004.

    Book  Google Scholar 

  10. Lakra J, Tikariha D, Yadav T, Satnami ML, Ghosh KK. Study of solubility efficiency of polycyclic aromatic hydrocarbons in single surfactant systems. J Surfact Deterg. 2013;16:957–66. doi:10.1007/s11743-013-1507-8.

    Article  CAS  Google Scholar 

  11. Lukáč M, Prokipčák I, Lacko I, Devínsky F. Solubilisation of griseofulvin and rutin in aqueous micellar solutions of gemini and heterogemini surfactants and their mixtures. Eur J Pharm Sci. 2011;44:194–9. doi:10.1016/j.ejps.2011.07.011.

    Article  Google Scholar 

  12. Cardoso AM, Morais CM, Cruz AR, Cardoso AL, Silva SG, do Vale ML, Marques EF, Pedros de Lima MC, Jurado AS. Gemini surfactants mediate efficient mitochondrial gene delivery and expresion. Mol Pharm. 2015;12:716–30.

    Article  CAS  Google Scholar 

  13. Hubčík L, Pullmannová P, Funari SS, Devínsky F, Uhríková D. DNA—DOPC—gemini surfactants complexes: effect of ionic strength. Acta Fac Pharm Univ Comen. 2014;61:26–34. doi:10.2478/afpuc-2014-0013.

    Google Scholar 

  14. Pisárčik M, Devínsky F. Surface tension study of cationic gemini surfactants binding to DNA. Cent Eur J Chem. 2014;12:577–85. doi:10.2478/s11532-014-0513-7.

    Article  Google Scholar 

  15. Häger M, Holmberg K. Phase transfer agents as catalysts for a nucleophilic substitution reaction in microemulsions. Chem Eur J. 2004;10:5460–6. doi:10.1002/chem.200306048.

    Article  Google Scholar 

  16. Kunkuma VL, Kaki SS, Rao BVSK, Prasad RBN, Pradhavathi Devi LA. A simple and facile method for the synthesis of octacosanol. Eur J Lipid Sci Technol. 2013;115:921–7. doi:10.1002/ejlt.201200195.

    Article  CAS  Google Scholar 

  17. Kanazawa A, Ikeda T, Endo T. Synthesis and antimicrobial activity of dimethyl- and trimethyl-substituted phosphonium salts with alkyl chains of various length. Antimicrob Agents Chemother. 1994;38:945–52. doi:10.1128/AAC.38.5.945.

    Article  CAS  Google Scholar 

  18. Aiad IA, Tawfik SM, Shaban SM, Abd-Elaal AA, El-Shafie M. Enhancing of corrosion inhibition and the biocidal effect of phosphonium surfactant compounds for oil field equipment. J Surfact Deterg. 2014;17:391–401. doi:10.1007/s11743-013-1512-y.

    Article  CAS  Google Scholar 

  19. Petkovic M, Hartmann DO, Adamová G, Seddon KR, Rebelo LPN, Pereira CS. Unravelling the mechanism of toxicity of alkyltributylphosphonium chlorides in Aspergillus nidulans conidia. New J Chem. 2012;36:56–63. doi:10.1039/C1NJ20470J.

    Article  CAS  Google Scholar 

  20. Luque-Ortega JR, Reuther P, Rivas L, Dardonville C. New benzophenone derived bisphosphonium salts as leishmanicidal leads targeting mitochondria through inhibition of respiratory complex II. J Med Chem. 2010;53:1788–98. doi:10.1021/jm901677h.

    Article  CAS  Google Scholar 

  21. Taladris A, Healy A, Pérez EJF, García VH, Martínez CR, Alkhaldi AAM, Eze AA, Kaiser M, de Konig HP, Chana A, Dardonville C. Synthesis and structure-activity analysis of new phosphonium salts with potent activity against african trypanosomes. J Med Chem. 2012;55:2606–22. doi:10.1021/jm2014259.

    Article  Google Scholar 

  22. Cai X, Tan S, Liao M, Wu T, Liu R, Yu B. Thermal stability and long-acting antibacterial activitiy of phosphonium montmorillonites. J Cent South Univ Technol. 2010;17:485–91. doi:10.1007/s11771-010-0511-7.

    Article  CAS  Google Scholar 

  23. Kenawy E-R, Abdel-Hay FI, El-Shanshoury AE-RR, El-Newehy MH. Biologically active polymers. V. Synthesis and antimicrobial activity of modified poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) derivatives with quaternary ammonium and phosphonium salts. J Polym Sci, Part A. 2002;40:2384–93. doi:10.1002/pola.10325.

    Article  CAS  Google Scholar 

  24. Anthierens T, Billiet L, Devlieghere F, Du Prey F. Poly (butylene adipate) functionalized with quaternary phosphonium groups as potential antimicrobial packaging material. Innov Food Sci Emerg. 2012;15:81–5. doi:10.1016/j.ifset.2012.02.010.

    Article  CAS  Google Scholar 

  25. Li C, Liu Y, Zheng Q-Y, Ao N-J. Preparation and antimicrobial activity of quaternary phosphonium modified epoxidized natural rubber. Mater Lett. 2013;93:145–8. doi:10.1016/j.matlet.2012.11.045.

    Article  CAS  Google Scholar 

  26. Kelso GF, Porteous CM, Coulter CV, Hughes G, Perteous WK, Ledgerwood EC, Smith RA, Murphy MP. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem. 2001;276:4588–96. doi:10.1074/jbc.M009093200.

    Article  CAS  Google Scholar 

  27. Millard M, Gallagher JD, Olenyuk BZ, Neamati N. A selective mitochondrial-targeted chlorambucil with remarkable cytotoxicity in breast and pancreatic cancers. J Med Chem. 2013;56:9170–9. doi:10.1021/jm4012438.

    Article  CAS  Google Scholar 

  28. Bubalo MC, Radošević K, Redovniković IR, Halambek J, Srček VG. A brief overview of the potential environmental hazards of ionic liquids. Ecotoxicol Environ Saf. 2014;99:1–12. doi:10.1016/j.ecoenv.2013.10.019.

    Article  Google Scholar 

  29. Sydow M, Szczepaniak Z, Framski G, Staninska J, Owsianiak M, Szulc A, Piotrowska-Cyplik A, Zgoła-Grześkowiak A, Wyrwas B, Chrzanowski Ł. Persistance of selected ammonium- and phosphonium-based ionic liquid in urban park soil microcosms. Int Biodeterior Biodegradation. 2015;103:91–6. doi:10.1016/j.ibiod.2015.04.019.

    Article  CAS  Google Scholar 

  30. Morawski AW, Janus M, Goc-Maciejewska I, Syguda A, Pernak J. Decomposition of ionic liquids by photocatalysis. Pol J Chem. 2005;79:1929–35.

    CAS  Google Scholar 

  31. Munoz M, Domínguez CM, de Pedro ZM, Quintanilla A, Casa JA, Rodriguez JJ. Ionic liquids breakdown be Fenton oxidation. Catal Today. 2015;240:16–21. doi:10.1016/j.cattod.2014.03.028.

    Article  CAS  Google Scholar 

  32. Al-Wardian A, Gleen KM, Palepu RM. Thermodynamic and interfacial properties of binary cationic mixed systems. Colloid Surface A. 2004;247:115–23. doi:10.1016/j.colsurfa.2004.08.037.

    Article  CAS  Google Scholar 

  33. Prasad M, Moulik SP, MacDonald A, Palepu R. Self-aggregation of alkyl (C10 , C12 , C14 , and C16 ) triphenyl phosphonium bromides and their 1:1 molar mixtures in aqueous medium: a thermodynamic study. J Phys Chem B. 2004;108:355–62. doi:10.1021/jp036358+.

    Article  CAS  Google Scholar 

  34. Ray GB, Ghosh S, Moulik SP. Ternary mixtures of alkyltriphenylphosphonium bromides (C12TPB, C14TPB and C16TPB) in aqueous medium: their interfacial, bulk and fluorescence quenching behaviour. J Chem Sci. 2010;122:109–17. doi:10.1007/s12039-010-0011-1.

    Article  CAS  Google Scholar 

  35. Gainanova GA, Vagapova GI, Syakaev VV, Ibragimova AR, Valeeva FG, Tudriy EV, Galkina IV, Kataeva ON, Zakharova LY, Latypov SK, Konovalov AI. Self-assembling systems based on amphiphilic alkyltriphenylphosphonium bromides: elucidation of the role of head group. J Colloid Interface Sci. 2012;367:327–36. doi:10.1016/j.jcis.2011.10.074.

    Article  CAS  Google Scholar 

  36. Thakkar K, Bharatiya B, Shah DO, Ray D, Aswal VK, Bahadur P. Interaction of ionic liquid type cationic surfactants with triton X-100 nonionic micelles. Colloids Surf A Physicochem Eng Aspects. 2015;484:547–57. doi:10.1016/j.colsurfa.2015.08.039.

    Article  CAS  Google Scholar 

  37. Vagapova G, Ibragimova A, Zakharov A, Dobrynin A, Galkina I, Zakharova L, Konovalov A. Novel biomimetic system based on polyethylene glycols and amphiphilic phosphonium salts. Slef-organization and solubilization of hydrophobic guest. Eur Polym J. 2013;49:1031–9. doi:10.1016/j.eurpolymj.2013.01.024.

    Article  CAS  Google Scholar 

  38. Vagapova GI, Valeeva FG, Gainanova GA, Syakaev VV, Galkina IV, Zakharova LY, Latypov SK, Konovalov AI. Novel self-assembling system based on amphiphilic phosphonium salts and polyethylene glycol. Kinetic arguments for synergetic aggregation behaviour. Colloids Surf A. 2013;419:186–93. doi:10.1016/j.colsurfa.2012.11.071.

    Article  CAS  Google Scholar 

  39. Gaynanova GA, Vagapova GI, Valeeva FG, Vasilieva EA, Galkina IV, Zakharova LY, Sinyashin OG. A novel supramolecular catalytic system based on amphiphilic triphenylphosphonium bromide for the hydrolysis of phosphorus acid esters. Colloids Surf A. 2016;489:95–102. doi:10.1016/j.colsurfa.2015.10.032.

    Article  CAS  Google Scholar 

  40. Allen CFH, Bell A. 2,3-dimethyl-1,3-butadiene. Org Synth. 1942;22:39–43. doi:10.15227/orgsyn.022.0039.

    Article  CAS  Google Scholar 

  41. Breque A, Mathey F, Savignac P. An improved one-pot synthesis of phospholes. Synthesis. 1981;1981:983–5. doi:10.1055/s-1981-29670.

    Article  Google Scholar 

  42. Lukáč M, Garajová M, Mrva M, Devínsky F, Ondriska F, Kubincová J. Novel fluorinated dialkylphosphonatocholines: synthesis, physicochemical properties and antiprotozoal activities against Acanthamoeba spp. J Fluorine Chem. 2014;164:10–7. doi:10.1016/j.jfluchem.2014.04.008.

    Article  Google Scholar 

  43. Pisárčik M, Jampílek J, Devínsky F, Drábiková J, Tkacz J, Opravil T. Gemini surfactants with Polymethylene spacer: supramolecular structures at solid surface and aggregation in aqueous solution. J Surfact Deterg. 2016;19:477–86. doi:10.1007/s11743-016-1797-8.

    Article  Google Scholar 

  44. Koppel DE. Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants. J Phys Chem. 1972;57:4814–20. doi:10.1063/1.1678153.

    Article  CAS  Google Scholar 

  45. Provencher SW. A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput Phys Commun. 1982;27:213–27. doi:10.1016/0010-4655(82)90173-4.

    Article  Google Scholar 

  46. Lukáč M, Lacko I, Bukovský M, Kyselová Z, Karlovská J, Horváth B, Devínsky F. Synthesis and antimicrobial activity of a series of optically active quaternary ammonium salts derived from phenylalanine. Cent Eur J Chem. 2010;8:194–201. doi:10.2478/s11532-009-0126-8.

    Google Scholar 

  47. Quin LD, Borleske SG, Engel JF. Synthesis and spectral characterization of some C-alkylphospholes and phospholecarboxylates. J Org Chem. 1973;38:1858–66. doi:10.1021/jo00950a018.

    Article  CAS  Google Scholar 

  48. Mathey F, Muller G. Hydrolyse des sels de phospholium monomères: préparation et propriétés des oxydes de 1,3-diénylphosphines. Can J Chem. 1978;56:2486–90. doi:10.1139/v78-406.

    Article  CAS  Google Scholar 

  49. Shehata HA, Abd El-wahab AA, Hafiz AA, Aiad I, Hegazy MA. Synthesis and characterization of some cationic surfactants. J Surfact Deterg. 2008;11:139–44. doi:10.1007/s11743-008-1064-8.

    Article  CAS  Google Scholar 

  50. Vashishat R, Chabba S, Mahajan RK. Effect of surfactant head group on micellization and morphological transitions in drug-Surfactant catanionic mixture: a multi-technique approach. Colloids Surf A. 2016;498:206–17. doi:10.1016/j.colsurfa.2016.03.058-0.

    Article  CAS  Google Scholar 

  51. Devínsky F, Lacko I, Mlynarčík D, Švajdlenka E, Borovská V. Quaternary ammonium salts. 33. QSAR of antimicrobially active Niketamide derivatives. Chem Pap. 1990;44:159–70.

    Google Scholar 

  52. Pavlíková M, Lacko I, Devínsky F, Mlynarčík D. Quantitative relationship between structure, aggregation properties and antimicrobial activity of quaternary ammonium bolaamphiphiles. Collect Czech Chem Commun. 1995;60:1213–28. doi:10.1135/cccc19951213.

    Article  Google Scholar 

  53. Mikláš R, Miklášová N, Bukovský M, Horváth B, Kubincová J, Devínsky F. Synthesis, surface and antimicrobial properties of some quaternary ammonium homochiral camphor sulfonamides. Eur J Pharm Sci. 2014;65:29–37. doi:10.1016/j.ejps.2014.08.013.

    Article  Google Scholar 

  54. Balgavý P, Devínsky F. Cut-off effects in biological activities of surfactants. Adv Colloid Interface Sci. 1996;66:23–63. doi:10.1016/0001-8686(96)00295-3.

    Article  Google Scholar 

  55. Devínsky F, Lacko I, Mlynarčík D, Račanský V, Krasnec Ľ. Relationship between critical micelle concentrations and minimum inhibitory concentration for some non-aromatic quaternary ammonium salts and amine oxides. Tenside Detergents. 1985;22:10–5.

    Google Scholar 

Download references

Acknowledgements

This publication is the result of the project implementation: Centre of Excellency in Security Research supported by the Research and Development Operational Programme funded by the ERDF Grant Number: ITMS 26240120034. This work was supported by the Slovak Research and Development Agency under the Contract No. APVV-0516-12 and by the Grant Agency of Ministry of Education and Academy of Science of Slovak republic (VEGA), Project No. 1/0298/16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloš Lukáč.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukáč, M., Devínsky, F., Pisárčik, M. et al. Novel Phospholium-Type Cationic Surfactants: Synthesis, Aggregation Properties and Antimicrobial Activity. J Surfact Deterg 20, 159–171 (2017). https://doi.org/10.1007/s11743-016-1908-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-016-1908-6

Keywords

Navigation