Skip to main content
Log in

Synergisms in Binary Mixtures of Anionic and pH-Insensitive Zwitterionic Surfactants and Their Precipitation Behavior with Calcium Ions

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

This work aims to investigate synergy in anionic and zwitterionic surfactant mixtures, as they result in better interfacial properties and micellization behavior. Various mixtures of the pH-insensitive zwitterionic surfactant 3-(decyldimethylammonio) propanesulfonate (Zwittergent 3-10) and sodium dodecylsulfate (SDS) were prepared in aqueous solution at a range of pH values between 2 and 13. The thermodynamic parameters during mixed surfactant adsorption at the air/water interface are obtained and the results show the mixed surfactant systems having superior properties to the constituent surfactants. Experimentally, the mixed surfactant solutions clearly improve the surface activities by lowering the critical micelle concentration (CMC) and lowering the surface tension at the air/water interface. The synergisms are investigated through the interaction parameters estimated from regular solution theory that is used to quantitatively describe the nonideality of surfactant mixtures. High negative interaction parameters are obtained from these surfactant mixtures. Experimental precipitation phase boundaries of SDS in the presence of CaCl2 were also investigated in mixtures containing pH-insensitive zwitterionic surfactant at different pH levels from 2 to 13 and SDS mole fractions of 0.25, 0.50, 0.75, and 1.00. Changes in the precipitation phase boundaries are due to the changes in the speciation or activities of the major components both below and above the CMC. As a result, the precipitation phase boundaries are pH dependent. In addition, mixed micellization and counterion binding to the micelle also change the precipitation phase boundary above the CMC. The activity-based solubility product of calcium dodecylsulfate is also determined from the precipitation phase boundaries below the CMC. X-ray diffraction patterns and SEM images confirm that only calcium dodecylsulfate precipitates in the soap scum for all pH and surfactant compositions studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

a m :

Mean molecular area

f 2+Ca :

Activity coefficient of calcium ion in the solution phase

f DS :

Activity coefficient of dodecylsulfate ion (monomer) in the solution phase

K SP :

Activity-based solubility product

S 0 :

Degree of supersaturation or supersaturation ratio

X i :

Mole fraction of surfactant i in micellar phase

α i :

Mole fraction of surfactant i in monomeric phase

β M :

Regular solution theory interaction parameter in the mixed micelle

γ CMC :

Surface tension at the critical micelle concentration

γ i,M :

Activity coefficient of surfactant i in the mixed micelle

Γ t :

Surface excess concentration

References

  1. Qu G, Cheng J, Wei J, Yu T, Ding W, Luan H. Characterization and surface properties of series sulfobetaine surfactants. J Surfactants Deterg. 2011;14(1):31–5.

    Article  CAS  Google Scholar 

  2. McLachlan AA, Marangoni DG. Interactions between zwitterionic and conventional anionic and cationic surfactants. J Colloid Interface Sci. 2006;295(1):243–8.

    Article  CAS  Google Scholar 

  3. Eichhorn P, Knepper TP. Electrospray ionization mass spectrometric studies on the amphoteric surfactant cocamidopropylbetaine. J Mass Spectrom. 2001;36(6):677–84.

    Article  CAS  Google Scholar 

  4. Lopez-Diaz D, Garcia-Mateos I, Velázquez M. Synergism in mixtures of zwitterionic and ionic surfactants. Colloids Surf A. 2005;270:53–162.

    Google Scholar 

  5. Li P, Ma K, Thomas RK, Penfold J. Analysis of the asymmetric synergy in the adsorption of zwitterionic-ionic surfactant mixtures at the air–water interface below and above the critical micelle concentration. J Phys Chem B. 2016;120(15):3677–91.

    Article  CAS  Google Scholar 

  6. Wang ZY, Zhang SF, Fang Y, Qi LY. Synergistic behavior between zwitterionic surfactant α-decylbetaine and anionic surfactant sodium dodecyl sulfate. J Surfactants Deterg. 2010;13(4):381–5.

    Article  CAS  Google Scholar 

  7. Thakkar K, Bharatiya B, Shah DO, Bahadur P. Investigations on zwitterionic alkylsulfobetaines and nonionic triton X-100 in mixed aqueous solutions: effect on size, phase separation and mixed micellar characteristics. J Mol Liq. 2015;209:569–77.

    Article  CAS  Google Scholar 

  8. Amin-Alami A, Kamenka N, Partyuka S. Interfacial properties of zwitterionic surfactants: N-dodecylbetaine. Thermochim Acta. 1987;122(1):171–9.

    Article  CAS  Google Scholar 

  9. Rosen MJ, Kunjappu JT. Characteristic features of surfactants. In: Rosen MJ, editor. Surfactants and interfacial phenomena. New Jersey: Wiley; 2012. p. 1–38.

    Chapter  Google Scholar 

  10. Yang J. Viscoelastic wormlike micelles and their applications. Curr Opin Colloid Interface Sci. 2002;7(5):276–81.

    Article  CAS  Google Scholar 

  11. Lechuga M, Fernández-Serrano M, Jurado E, Núñez-Olea J, Ríos F. Acute toxicity of anionic and non-ionic surfactants to aquatic organisms. Ecotoxicol Environ Saf. 2016;125:1–8.

    Article  CAS  Google Scholar 

  12. Fernández-Serrano M, Jurado E, Fernández-Arteaga A, Ríos F, Lechuga M. Ecotoxicological assessment of mixtures of ether carboxylic derivative and amine-oxide-based non-ionic surfactants on the aquatic environment. J Surfactants Deterg. 2014;17(6):1161–8.

    Article  Google Scholar 

  13. Jurado E, Fernández-Serrano M, Ríos F, Lechuga M. Aerobic biodegradation of surfactants. In: Chamy R, Rosenkranz F, editors. Biodegradation-life of science. Croatia: InTech; 2013. p. 63–81.

    Google Scholar 

  14. Rosen MJ, Kunjappu JT. Surfactants and interfacial phenomena. New Jersey: Wiley; 2012.

    Book  Google Scholar 

  15. Mahajan RK, Vohra KK, Shaheen A, Aswal VK. Investigations on mixed micelles of binary mixtures of zwitterionic surfactants and triblock polymers: a cyclic voltammetric study. J Colloid Interface Sci. 2008;326(1):89–95.

    Article  CAS  Google Scholar 

  16. Fuchs-Godec R. Effects of surfactants and their mixtures on inhibition of the corrosion process of ferritic stainless steel. Electrochim Acta. 2009;54(8):2171–9.

    Article  CAS  Google Scholar 

  17. Ridout G, Hinz RS, Hostynek JJ, Reddy AK, Wiersema RJ, Hodson CD, Lorence CR, Guy RH. The effects of zwitterionic surfactants on skin barrier function. Fundam Appl Toxicol. 1991;16(1):41–50.

    Article  CAS  Google Scholar 

  18. Tadros TF. Applied surfactants: principles and applications. Germany: Wiley; 2006.

    Google Scholar 

  19. Myers D. Surfactant science and technology. New Jersey: Wiley; 2005.

    Book  Google Scholar 

  20. Fernley G. Zwitterionic surfactants: structure and performance. J Am Oil Chem Soc. 1978;55(1):98–103.

    Article  CAS  Google Scholar 

  21. Zhao J, Dai C, Ding Q, Du M, Feng H, Wei Z, Chen A, Zhao M. The structure effect on the surface and interfacial properties of zwitterionic sulfobetaine surfactants for enhanced oil recovery. RSC Adv. 2015;5(18):13993–4001.

    Article  CAS  Google Scholar 

  22. Maneedaeng A, Haller KJ, Grady BP, Flood AE. Thermodynamic parameters and counterion binding to the micelle in binary anionic surfactant systems. J Colloid Interface Sci. 2011;356(2):598–604.

    Article  CAS  Google Scholar 

  23. Rosen MJ. Synergism in mixtures containing zwitterionic surfactants. Langmuir. 1991;7(5):885–8.

    Article  CAS  Google Scholar 

  24. Alam MS, Naqvi AZ, Kabir-ud-Din. Surface and micellar properties of some amphiphilic drugs in the presence of additives. J Chem Eng Data. 2007;52(4):1326–31.

    Article  CAS  Google Scholar 

  25. Khan IA, Mohammad R, Alam MS, Kabir-ud-Din. Effect of alkylamine chain length on the critical micelle concentration of cationic gemini butanediyl-α, ω-bis (dimethylcetylammonium bromide) surfactant. J Dispers Sci Technol. 2009;30(10):1486–93.

    Article  CAS  Google Scholar 

  26. Khan IA, Mohammad R, Alam MS, Kabir-ud-Din. The interaction of cationic gemini surfactant 1, 4-butanediyl-α, ω-bis (dimethylcetylammonium bromide) with primary linear alkanols. J Dispers Sci Technol. 2009;31(1):129–37.

    Article  Google Scholar 

  27. Alam MS, Ragupathy R, Mandal AB. The self-association and mixed micellization of an anionic surfactant, sodium dodecyl sulfate, and a cationic surfactant, cetyltrimethylammonium bromide: conductometric, dye solubilization, and surface tension studies. J Dispers Sci Technol. 2016;37(11):1645–54.

    Article  CAS  Google Scholar 

  28. Alam MS, Ragupathy R, Mandal AB. Self-association, mixed micellization and thermodynamic studies of sodium dodecyl sulfate (SDS) and hexanediyl-1, 6-bis (dimethylcetylammonium bromide (16-6-16). J Dispers Sci Technol. 2016;37(12):1760–6.

    Article  CAS  Google Scholar 

  29. Khan IA, Mohammad R, Alam MS. Surface properties and mixed micellization of cationic gemini surfactants with ethyleneamines. J Chem Eng Data. 2009;55(1):370–80.

    Article  Google Scholar 

  30. Khan IA, Mohammad R, Alam MS. Mixed micellization of cationic gemini surfactants with primary linear alkylamines. J Surfactants Deterg. 2010;13(2):179–88.

    Article  CAS  Google Scholar 

  31. Nong L, Xiao C, Zhong Z. Physicochemical properties of novel phosphobetaine zwitterionic surfactants and mixed systems with an anionic surfactant. J Surfactants Deterg. 2011;14(3):433–8.

    Article  CAS  Google Scholar 

  32. Sikorska E, Wyrzykowski D, Szutkowski K, Greber K, Lubecka EA, Zhukov I. Thermodynamics, size, and dynamics of zwitterionic dodecylphosphocholine and anionic sodium dodecyl sulfate mixed micelles. J Therm Anal Calorim. 2016;123(1):511–23.

    Article  CAS  Google Scholar 

  33. Danov KD, Kralchevska SD, Kralchevsky PA, Ananthapadmanabhan KP, Lips A. Mixed solutions of anionic and zwitterionic surfactant (betaine): surface-tension isotherms, adsorption, and relaxation kinetics. Langmuir. 2004;20(13):5445–53.

    Article  CAS  Google Scholar 

  34. Rosen MJ, Zhu BY. Synergism in binary mixtures of surfactants: III. Betaine-containing systems. J Colloid Interface Sci. 1984;99(2):427–34.

    Article  CAS  Google Scholar 

  35. Blagojević SN, Blagojević SM, Pejić ND. Performance and efficiency of anionic dishwashing liquids with amphoteric and nonionic surfactants. J Surfactants Deterg. 2016;19(2):363–72.

    Article  Google Scholar 

  36. Ren ZH. Mechanism of the salt effect on micellization of an aminosulfonate amphoteric surfactant. Ind Eng Chem Res. 2015;54(40):9683–8.

    Article  CAS  Google Scholar 

  37. Ma K, Li PX, Dong CC, Thomas RK, Penfold J. Unusual adsorption at the air–water interface of a zwitterionic carboxybetaine with a large charge separation. Langmuir. 2016;32(14):3340–7.

    Article  CAS  Google Scholar 

  38. Hu X, Li Y, Sun H, Song X, Li Q, Cao X, Li Z. Effect of divalent cationic ions on the adsorption behavior of zwitterionic surfactant at silica/solution interface. J Phys Chem B. 2010;114(27):8910–6.

    Article  CAS  Google Scholar 

  39. Byers S, Hopkins TJ, Kuettner KE, Kimura JH. The effect of zwitterionic detergents on the extraction and functional properties of cartilage proteoglycans. J Biol Chem. 1987;262(19):9166–74.

    CAS  Google Scholar 

  40. Rodriguez CH, Lowery LH, Scamehorn JF, Harwell JH. Kinetics of precipitation of surfactants. I. Anionic surfactants with calcium and with cationic surfactants. J Surfactants Deterg. 2001;4(1):1–14.

    Article  CAS  Google Scholar 

  41. Stellner KL, Scamehorn JF. Hardness tolerance of anionic surfactant solutions. 1. Anionic surfactant with added monovalent electrolyte. Langmuir. 1989;5(1):70–7.

    Article  CAS  Google Scholar 

  42. Maneedaeng A, Flood AE, Grady BP, Haller KJ. Explanation for the increased induction times in binary mixed anionic surfactant mixtures. Cryst Growth Des. 2011;11(7):2948–56.

    Article  CAS  Google Scholar 

  43. Brant LL, Stellner K, Scamehorn JF. Recovery of surfactant from surfactant-based separations using a precipitation process. In: Scamehorn JF, Harwell JH, editors. Surfactant-based separation processes. New York: Marcel Dekker; 1983. p. 323–38.

    Google Scholar 

  44. Vanjara A, Dixit S. Recovery of cationic surfactant by using precipitation method. Sep Technol. 1996;6(1):91–3.

    Article  CAS  Google Scholar 

  45. Wu B, Christian SD, Scamehorn JF. Recovery of surfactant from micellar-enhanced ultrafiltration using a precipitation process. In: Lagaly G, editor. Horizons 2000—aspects of colloid and interface science at the turn of the millennium. New York: Springer; 1998. p. 60–73.

    Chapter  Google Scholar 

  46. Rosen MJ, Wang H, Shen P, Zhu Y. Ultralow interfacial tension for enhanced oil recovery at very low surfactant concentrations. Langmuir. 2005;21(9):3749–56.

    Article  CAS  Google Scholar 

  47. Gale WW, Saunders RK, Ashcraft TL Jr (1976) Oil recovery method using a surfactant. US Patent 3(977): 471.

  48. Maneedaeng A, Flood AE, Haller KJ, Grady BP. Modeling of precipitation phase boundaries in mixed surfactant systems using an improved counterion binding model. J Surfactants Deterg. 2012;15(5):523–31.

    Article  CAS  Google Scholar 

  49. Zhou Q, Rosen MJ. Molecular interactions of surfactants in mixed monolayers at the air/aqueous solution interface and in mixed micelles in aqueous media: the regular solution approach. Langmuir. 2003;19(11):4555–62.

    Article  CAS  Google Scholar 

  50. Holland P, Rubingh D. Nonideal multicomponent mixed micelle model. J Phys Chem. 1983;87(11):1984–90.

    Article  CAS  Google Scholar 

  51. Laughlin RG. Fundamentals of the zwitterionic hydrophilic group. Langmuir. 1991;7(5):842–7.

    Article  CAS  Google Scholar 

  52. Kamenka N, Chorro M, Chevalier Y, Levy H, Zana R. Aqueous solutions of zwitterionic surfactants with varying carbon number of the intercharge group. 2. Ion binding by the micelles. Langmuir. 1955;11(11):4234–40.

    Article  Google Scholar 

  53. Okada T, Patil JM. Ion uptake by zwitterionic surfaces. Langmuir. 1998;14(21):6241–8.

    Article  CAS  Google Scholar 

  54. Li F, Li GZ, Chen JB. Synergism in mixed zwitterionic-anionic surfactant solutions and the aggregation numbers of the mixed micelles. Colloids Surf A. 1998;145(1):167–74.

    Article  CAS  Google Scholar 

  55. Matheson KL, Cox MF, Smith DL. Interactions between linear alkylbenzene sulfonates and water hardness ions. i. effect of calcium ion on surfactant solubility and implications for detergency performance. J Am Oil Chem Soc. 1985;62(9):1391–6.

    Article  CAS  Google Scholar 

  56. Moroi Y. Micelles: theoretical and applied aspects. New York: Plenum Press; 1992.

    Book  Google Scholar 

  57. Molinero I, Sierra M, Valiente M, Rodenas E. Physical properties of cetylpyridinium chloride micelles and their behaviour as reaction media. J Chem Soc Faraday Trans. 1992;92(1):59–63.

    Article  Google Scholar 

  58. Chaimovich H, Bonilha JB, Politi MJ, Quina FH. Ion exchange in micellar solutions. 2. Binding of hydroxide ion to positive micelles. J Phys Chem. 1979;83(14):1851–4.

    Article  CAS  Google Scholar 

  59. Berr S, Jones RR, Johnson JS Jr. Effect of counterion on the size and charge of alkyltrimethylammonium halide micelles as a function of chain length and concentration as determined by small-angle neutron scattering. J Phys Chem. 1992;96(13):5611–4.

    Article  CAS  Google Scholar 

  60. Walter A, Kuehl G, Barnes K, VanderWaerdt G. The vesicle-to-micelle transition of phosphatidylcholine vesicles induced by nonionic detergents: effects of sodium chloride, sucrose and urea. Biochim Biophys Acta Biomembr. 2000;1508(1–2):20–33.

    Article  CAS  Google Scholar 

  61. Oh SG, Shah DO. Effect of counterions on the interfacial tension and emulsion droplet size in the oil/water/dodecyl sulfate system. J Phys Chem. 1993;97(2):284–6.

    Article  CAS  Google Scholar 

  62. Brown TA. Molecular biology labfax. San Diego: Academic Press; 1998.

    Google Scholar 

  63. Rub MA, Naqvi AZ. Effect of temperature, salts and ureas on the association behavior of an amphiphilic phenothiazine drug promethazine hydrochloride. J Surfactants Deterg. 2012;15(5):541–50.

    Article  Google Scholar 

  64. Jungwirth P, Tobias DJ. Specific ion effects at the air/water interface. Chem Rev. 2006;106(4):1259–81.

    Article  CAS  Google Scholar 

  65. Nishikido N. Thermodynamic models for mixed micellization. New York: Marcel Dekker; 1993.

    Google Scholar 

  66. Hua XY, Rosen MJ. Synergism in binary mixtures of surfactants. J Colloid Interface Sci. 1982;90(1):212–9.

    Article  CAS  Google Scholar 

  67. Clint JH. Micellization of mixed nonionic surface active agents. J Chem Soc Faraday Trans. 1971;1(71):1327–34.

    Google Scholar 

  68. Qi L, Fang Y, Wang Z, Ma N, Jiang L, Wang Y. Synthesis and physicochemical investigation of long alkylchain betaine zwitterionic surfactant. J Surfactants Deterg. 2008;11(1):55–9.

    Article  CAS  Google Scholar 

  69. Soontravanich S, Scamehorn JF. Use of a nonionic surfactant to inhibit precipitation of anionic surfactants by calcium. J Surfactants Deterg. 2009;13(1):13–8.

    Article  Google Scholar 

  70. Davies C, Shedlovsky T. Ion association. J Electrochem Soc. 1964;111(3):85C–6C.

    Article  Google Scholar 

  71. Soontravanich S, Scamehorn JF. Relation of supersaturation ratio in mixed anionic surfactant solutions to kinetics of precipitation with calcium. J Surfactants Deterg. 2009;13(1):1–11.

    Article  Google Scholar 

  72. Kallay N, Pastuovic M, Matijević E. Solubility and enthalpy of precipitation of magnesium, calcium, strontium, and barium dodecyl sulfates. J Colloid Interface Sci. 1985;106(2):452–8.

    Article  CAS  Google Scholar 

  73. Soontravanich S, Walsh S, Scamehorn JF, Harwell JH, Sabatini DA. Interaction between an anionic and an amphoteric surfactant. Part II: Precipitation. J Surfactants Deterg. 2009;12(2):145–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Suranaree University of Technology for research funding through the SUT Research and Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atthaphon Maneedaeng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 85 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maneedaeng, A., Flood, A.E. Synergisms in Binary Mixtures of Anionic and pH-Insensitive Zwitterionic Surfactants and Their Precipitation Behavior with Calcium Ions. J Surfact Deterg 20, 263–275 (2017). https://doi.org/10.1007/s11743-016-1902-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-016-1902-z

Keywords

Navigation