Skip to main content
Log in

Synthesis, Surface Activities and Toluene Solubilization by Amine-oxide Gemini Surfactants

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

A series of amine-oxide gemini surfactants featuring amide groups [N, N’-dimethyl-N, N’-bis(2-alkylamideethyl)-ethylenediamine oxide (alkyl = C11H23, C13H27, C15H31, C17H35)] have been synthesized via a three-step synthetic route, and their chemical structures were confirmed by mass spectra, FTIR and 1H-NMR spectra. The surface activities of these compounds have been measured. The results show that these synthesized amine-oxide gemini surfactants reduced the surface tension of water to a minimum value of approximately 26.91 mN m−1 at a concentration of 2.92 × 10−5mol L−1. Furthermore, their critical micelle concentration (CMC) values and solubilization of toluene decrease with an increase of the hydrophobic chain length from 12 to 18. Isoelectric point measurements revealed that their pI values range from 4.0 to 10.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Menger FM, Littau CA (1991) Gemini-surfactants: synthesis and properties. J Am Chem Soc 113:1451–1452

    Article  CAS  Google Scholar 

  2. Song LDS, Rosen MJ (1996) Surface properties, micellization, and premicellar aggregation of gemini surfactants with rigid and flexible spacers. Langmuir 12:1149–1153

    Article  CAS  Google Scholar 

  3. Menger FM, Littau CA (1993) Gemini surfactants: a new class of self-assembling molecules. J Am Chem Soc 115:10083–10090

    Article  CAS  Google Scholar 

  4. Zhao J (1999) A new generation of surfactants: geminis. Prog Chem 11:348

    CAS  Google Scholar 

  5. Zana R (2002) Dimeric and oligomeric surfactants. behavior at interfaces and in aqueous solution: a review. Adv Colloid Interface Sci 97:205–253

    Article  CAS  Google Scholar 

  6. Sharma KS, Rodgers C, Palepu RM, Rakshit AK (2003) Studies of mixed surfactant solutions of cationic dimeric (gemini) surfactant with nonionic surfactant C12E6 in aqueous medium. J Colloid Interface Sci 268:482–488

    Article  CAS  Google Scholar 

  7. Menger FM, Keiper JS (2000) Gemini surfactants. Angew Chem Int Ed 39:1906–1920

    Article  Google Scholar 

  8. Hoque J, Kumar P, Aswal VK, Haldar J (2012) Aggregation properties of amide bearing cleavable gemini surfactants by small angle neutron scattering and conductivity studies. J Phys Chem B 116(32):9716–9728

    Article  Google Scholar 

  9. Sakai K, Sakai H, Abe M (2011) Recent advances in gemini surfactants: oleic acid-based gemini surfactants and polymerizable gemini surfactants. J Oleo Sci 60:159

    Article  CAS  Google Scholar 

  10. Baglioni M, Jàidar Benavides Y, Berti D, Giorgi R, Keiderling U, Baglioni P (2015) An amine-oxide surfactant-based microemulsion for the cleaning of works of art. J Colloid Interface Sci 440:204–210

    Article  CAS  Google Scholar 

  11. Hart JM (2009) The influence of biofilm on the antifungal activity of amine oxide. Master’s thesis, The University of Tennessee Health Science Center

  12. García MT, Campos E, Ribosa I (2007) Biodegradability and ecotoxicity of amine oxide based surfactants. Chemosphere 69:1574–1578

    Article  Google Scholar 

  13. Yoshimura T, Ishihara K, Esumi K (2005) Sugar-based gemini surfactants with peptide bonds-synthesis, adsorption, micellization, and biodegradability. Langmuir 21:10409–10415

    Article  CAS  Google Scholar 

  14. Li Y, Zhang X, Li Y, Li C, Guo X (2014) Micellization of glucose-based surfactants with different counter ions and their interaction with DNA. Colloids Surf A Physicochem Eng Asp 443:224–232

    Article  CAS  Google Scholar 

  15. Komorek U, Wilk KA (2004) Surface and micellar properties of new nonionic gemini aldonamide-type surfactants. J Colloid Interface Sci 271:206–211

    Article  CAS  Google Scholar 

  16. Zhou T, Yang H, Xu X, Wang X, Wang J, Dong G (2008) Synthesis, surface and aggregation properties of nonionic poly (ethylene oxide) gemini surfactants. Colloids Surf A 317:339–343

    Article  CAS  Google Scholar 

  17. FitzGerald PA, Carr MW, Davey TW, Serelis AK, Such CH, Warr GG (2004) Preparation and dilute solution properties of model gemini nonionic surfactants. J Colloid Interface Sci 275:649–658

    Article  CAS  Google Scholar 

  18. Hoque J, Gonuguntla S, Yarlagadda V, Aswal VK, Haldar J (2012) Effect of amide bonds on the self-assembly of gemini surfactants. Phys Chem Chem Phys 16:11279–11288

    Article  Google Scholar 

  19. Stjerndahl M, Holmberg K (2005) Synthesis, stability, and biodegradability studies of a surface-active amide. J Surfactants Deterg 8:331–337

    Article  CAS  Google Scholar 

  20. Zhou M, Zhao J, Hu X (2012) Synthesis of bis [N, N’-(alkylamideethyl)ethyl] triethylenediamine bromide surfactants and their oilfield application investigation. J Surfactants Deterg 15:309–315

    Article  CAS  Google Scholar 

  21. Eschweiler W (1905) Ersatz von an stickstoff gebundenen wasserstoffatomen durch die methylgruppe mit Hülfe von Formaldehyd. Ber Dtsch Chem Ges 38:880–882

    Article  Google Scholar 

  22. Pine SH (1968) The eschweiler-clark methylation of amines: an organic chemistry experiment. J Chem Educ 45(2):118

    Article  CAS  Google Scholar 

  23. Tehrani-Bagha AR, Singh RG, Holmberg K (2012) Solubilization of two organic dyes by cationic ester-containing gemini surfactants. J Colloid Interface Sci 376:112–118

    Article  CAS  Google Scholar 

  24. Chattoraj DK, Birdi KS (1984) Adsorption and the gibbs surface excess plenum. Springer, New York

    Book  Google Scholar 

  25. Menger FM, Lei S, Syed AAR (2010) Additional support for a revised Gibbs analysis. Langmuir 26:1588–1589

    Article  CAS  Google Scholar 

  26. Zana R (1996) Critical micellization concentration of surfactants in aqueous solution and free energy of micellization. Langmuir 12:1208–1211

    Article  CAS  Google Scholar 

  27. Negm NA (2007) Solubilization, surface active and thermodynamic parameters of gemini amphiphiles bearing nonionic hydrophilic spacers. J Surfactants Deterg 10:71–80

    Article  CAS  Google Scholar 

  28. Cheng H, Zhang HN, Liu XF, Lin MC, Qin ZR, Fang Y (2015) Effect of polyoxyethylene chain length on the physicochemical properties of N, N-dimethyl-N-dodecyl polyoxyethylene amine oxide hybrid surfactants (C12EOnAO, with n = 1–4). J Surfactants Deterg 18:487–493

    Article  CAS  Google Scholar 

  29. Wang Y, Han Y, Huang X, Cao M, Wang Y (2008) Aggregation behaviors of a series of anionic sulfonate gemini surfactants and their corresponding monomeric surfactant. J Colloid Interface Sci 319:534–541

    Article  CAS  Google Scholar 

  30. Rosen MJ, Mathias JH, Davenport L (1999) Aberrant aggregation behavior in cationic gemini surfactants investigated by surface tension, interfacial tension, and fluorescence methods. Langmuir 15:7340–7346

    Article  CAS  Google Scholar 

  31. Goracci L, Germani R, Rathman JF, Savelli G (2007) Anomalous behavior of amine oxide surfactants at the air/water interface. Langmuir 23:10525–10532

    Article  CAS  Google Scholar 

  32. Lin LH, Chou YS (2010) Surface activity and emulsification properties of hydrophobically modified dextrins. Colloids Surf A 364:55–60

    Article  CAS  Google Scholar 

  33. Bordi F, Cerichelli G, Berardinis N, Diociaiuti M, Giansanti L, Mancini G, Sennato S (2010) Synthesis and physicochemical characterization of new twin-tailed N-oxide based gemini surfactants N-oxide based gemini surfactants. Langmuir 26:6177–6183

    Article  CAS  Google Scholar 

  34. Lin LH, Lai YC (2011) Synthesis and physicochemical properties of nonionic gemini surfactants with a sulfonate spacer. Colloids Surf A 386:65–70

    Article  CAS  Google Scholar 

  35. Yoshimura T, Esumi K (2004) Synthesis and surface properties of anionic gemini surfactants with amide groups. J Colloid Interface Sci 276:231–238

    Article  CAS  Google Scholar 

  36. Lian L, Senlin T, Ping N (2011) Phase behavior of TXs/toluene/water microemulsion systems for solubilization absorption of toluene. J Environ Sci 22:271–276

    Google Scholar 

  37. Lawson RB, Adams CD (1999) Enhanced VOC absorption using the ozone/hydrogen peroxide advanced oxidation process. J Air Waste Manag Assoc 49:1315–1323

    Article  CAS  Google Scholar 

  38. Kim YM, Harrad S, Harrison RM (2001) Concentrations and sources of VOCs in urban domestic and public microenvironments. Environ Sci Technol 35:997–1004

    Article  CAS  Google Scholar 

  39. Dong Y, Jin Y, Wei DQ (2007) Surface activity and solubilization of a novel series of functional polyurethane surfactants. Polym Int 56:14–21

    Article  CAS  Google Scholar 

  40. Lim JC, Han DS (2011) Synthesis of dialkylamidoamine oxide surfactant and characterization of its dual function of detergency and softness. Colloids Surf A 389:166–174

    Article  CAS  Google Scholar 

  41. Mahajan RK, Vohra KK, Shaheen A, Aswal VK (2008) Investigations on mixed micelles of binary mixtures of zwitterionic surfactants and triblock polymers: a cyclic voltammetric study. J Colloid Interface Sci 326:89–95

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Science and Technology Program Key Project of Beijing Municipal Commission of Education (KZ201510011010), the transformation of scientific and technological achievements-promotion plan project (PXM 2015_014213_000049), the financial support of the Funding Project for the Cultivation of Excellent Talents in Beijing City (2013D005003000010), the National Natural Science Foundation of China (21176004, 21376008 and 21203005) and projects in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (2013BAC01B04 and 2014BAE03B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baocai Xu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Hu, J., Xu, B. et al. Synthesis, Surface Activities and Toluene Solubilization by Amine-oxide Gemini Surfactants. J Surfact Deterg 19, 673–680 (2016). https://doi.org/10.1007/s11743-016-1828-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-016-1828-5

Keywords

Navigation